%I #4 Dec 09 2014 11:24:05
%S 345,500,738,1215,1973,3349,6066,11665,23442,48256,101531,217705,
%T 471123,1025656,2242011,4913306,10789096,23715353,52156045,114761543,
%U 252589712,556041339,1224184142,2695346588,5934782271,13067996277,28775310395
%N Number of (n+2)X(1+2) 0..2 arrays with every row, column, diagonal or antidiagonal in each 3X3 subblock summing to a prime
%C Column 1 of A251819
%H R. H. Hardin, <a href="/A251812/b251812.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +10*a(n-3) -3*a(n-4) +5*a(n-5) -41*a(n-6) -7*a(n-7) -34*a(n-8) +83*a(n-9) +45*a(n-10) +94*a(n-11) -89*a(n-12) -93*a(n-13) -144*a(n-14) +45*a(n-15) +107*a(n-16) +137*a(n-17) +4*a(n-18) -73*a(n-19) -82*a(n-20) -20*a(n-21) +27*a(n-22) +28*a(n-23) +11*a(n-24) -4*a(n-25) -4*a(n-26) -2*a(n-27) for n>35
%e Some solutions for n=4
%e ..1..2..0....1..0..1....1..1..1....1..1..1....2..0..0....0..1..2....1..0..1
%e ..1..1..1....0..1..1....1..1..1....2..1..0....1..1..0....2..1..0....1..1..1
%e ..1..0..1....1..2..0....1..1..1....0..1..1....2..1..2....0..1..1....1..1..1
%e ..1..1..1....2..2..1....0..1..1....1..0..2....2..0..1....1..0..2....1..1..0
%e ..1..1..1....0..1..2....1..1..1....2..1..2....1..1..0....2..1..2....0..1..1
%e ..1..1..0....0..0..2....1..0..1....0..1..1....0..1..2....0..1..1....2..0..1
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 09 2014
|