Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Dec 09 2014 07:39:11
%S 150,1080,1740,6627,28932,19269,36552,348679,724300,216912,187000,
%T 3352272,17195593,18577404,2430631,905440,27291608,294088336,
%U 873945739,474547100,27278035,4206453,195753488,3934266515,26787273856,44356434596
%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having x11-x00 less than x10-x01
%C Table starts
%C .......150.........1080............6627.............36552..............187000
%C ......1740........28932..........348679...........3352272............27291608
%C .....19269.......724300........17195593.........294088336..........3934266515
%C ....216912.....18577404.......873945739.......26787273856........594938582014
%C ...2430631....474547100.....44356434596.....2446811684440......90717637876583
%C ..27278035..12140516092...2255553135793...224175608341756...13902663302194715
%C .305991368.310512400748.114701510008550.20552060379396424.2134102396738819286
%H R. H. Hardin, <a href="/A251801/b251801.txt">Table of n, a(n) for n = 1..112</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 7]
%F k=2: [order 20]
%F Empirical for row n:
%F n=1: [linear recurrence of order 7]
%F n=2: [order 22]
%F n=3: [order 40]
%F n=4: [order 52]
%e Some solutions for n=2 k=4
%e ..0..2..0..0..2....0..2..2..3..1....0..0..0..3..3....0..0..2..1..1
%e ..0..0..2..2..3....0..0..0..1..3....0..0..2..1..3....0..2..0..2..3
%e ..2..2..1..3..3....0..1..3..2..2....0..0..1..3..3....2..0..3..3..3
%Y Column 1 is A184665
%Y Row 1 is A223069(n+1)
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 09 2014