login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251801 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having x11-x00 less than x10-x01 13

%I #4 Dec 09 2014 07:39:11

%S 150,1080,1740,6627,28932,19269,36552,348679,724300,216912,187000,

%T 3352272,17195593,18577404,2430631,905440,27291608,294088336,

%U 873945739,474547100,27278035,4206453,195753488,3934266515,26787273856,44356434596

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having x11-x00 less than x10-x01

%C Table starts

%C .......150.........1080............6627.............36552..............187000

%C ......1740........28932..........348679...........3352272............27291608

%C .....19269.......724300........17195593.........294088336..........3934266515

%C ....216912.....18577404.......873945739.......26787273856........594938582014

%C ...2430631....474547100.....44356434596.....2446811684440......90717637876583

%C ..27278035..12140516092...2255553135793...224175608341756...13902663302194715

%C .305991368.310512400748.114701510008550.20552060379396424.2134102396738819286

%H R. H. Hardin, <a href="/A251801/b251801.txt">Table of n, a(n) for n = 1..112</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 7]

%F k=2: [order 20]

%F Empirical for row n:

%F n=1: [linear recurrence of order 7]

%F n=2: [order 22]

%F n=3: [order 40]

%F n=4: [order 52]

%e Some solutions for n=2 k=4

%e ..0..2..0..0..2....0..2..2..3..1....0..0..0..3..3....0..0..2..1..1

%e ..0..0..2..2..3....0..0..0..1..3....0..0..2..1..3....0..2..0..2..3

%e ..2..2..1..3..3....0..1..3..2..2....0..0..1..3..3....2..0..3..3..3

%Y Column 1 is A184665

%Y Row 1 is A223069(n+1)

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 09 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 12 07:22 EDT 2024. Contains 371623 sequences. (Running on oeis4.)