login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with no row, column, diagonal or antidiagonal in any 3X3 subblock summing to 2 3 6 or 7
9

%I #4 Dec 08 2014 20:10:10

%S 1280,1664,1664,3072,2640,3072,6144,6470,6470,6144,11834,14908,16710,

%T 14908,11834,22632,35948,44504,44504,35948,22632,44792,85826,130202,

%U 149364,130202,85826,44792,86988,210582,362242,541656,541656,362242

%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with no row, column, diagonal or antidiagonal in any 3X3 subblock summing to 2 3 6 or 7

%C Table starts

%C ...1280....1664.....3072......6144......11834.......22632.........44792

%C ...1664....2640.....6470.....14908......35948.......85826........210582

%C ...3072....6470....16710.....44504.....130202......362242.......1035154

%C ...6144...14908....44504....149364.....541656.....1765074.......6446816

%C ..11834...35948...130202....541656....2432344....10134314......46409346

%C ..22632...85826...362242...1765074...10134314....52977162.....302373278

%C ..44792..210582..1035154...6446816...46409346...302373278....2223220200

%C ..86988..525800..3188016..24880436..224615756..1884805604...17491571986

%C .170432.1281188..9369766..90369250.1050145210.11306760510..133178140146

%C .342826.3230514.28509654.354040208.5180674746.70754000356.1057141576284

%H R. H. Hardin, <a href="/A251791/b251791.txt">Table of n, a(n) for n = 1..286</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 41] for n>50

%F k=2: [order 60] for n>66

%F k=3: [order 70] for n>76

%e Some solutions for n=4 k=4

%e ..0..1..0..0..0..0....2..2..0..3..1..0....1..3..0..2..2..0....2..3..0..2..3..0

%e ..0..0..0..1..0..0....0..3..1..0..3..1....3..0..1..3..0..2....3..0..2..3..0..2

%e ..0..0..0..0..0..0....2..0..3..1..0..3....0..2..3..0..2..2....0..1..3..0..2..2

%e ..1..0..0..0..0..0....3..2..0..3..2..0....2..3..0..1..3..0....2..3..0..1..3..0

%e ..0..0..1..0..0..1....0..3..1..0..3..1....2..0..2..3..0..2....3..0..2..3..0..2

%e ..0..0..0..0..0..0....2..0..3..2..0..3....0..2..3..0..2..3....0..1..3..0..2..3

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 08 2014