login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Digital root of A027444(n) = n + n^2 + n^3, n>=1. Repeat(3, 5, 3, 3, 2, 6, 3, 8, 9).
1

%I #35 Sep 08 2022 08:46:10

%S 3,5,3,3,2,6,3,8,9,3,5,3,3,2,6,3,8,9,3,5,3,3,2,6,3,8,9,3,5,3,3,2,6,3,

%T 8,9,3,5,3,3,2,6,3,8,9,3,5,3,3,2,6,3,8,9,3,5,3,3,2,6,3,8,9,3,5,3,3,2,

%U 6,3,8,9,3,5,3,3,2,6,3,8,9,3,5,3,3,2,6,3,8,9,3,5,3,3,2,6,3,8,9,3

%N Digital root of A027444(n) = n + n^2 + n^3, n>=1. Repeat(3, 5, 3, 3, 2, 6, 3, 8, 9).

%C Periodic with cycle of length 9: {3, 5, 3, 3, 2, 6, 3, 8, 9}.

%C a(n) also arises from the decimal expansion of 117775463/333333333 = 0.repeat(353326389).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DigitalRoot.html">Digital Root</a>.

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 1).

%F a(n) = sum of digits of (n+n^2+n^3), reduced to digital root.

%F a(n) = A010888(A027444(n)), and sequence may start at n=0.

%F a(n) = A010888(A010888(n) + A056992(n) + A073636(n)).

%F G.f.: x*(9*x^8 + 8*x^7 + 3*x^6 + 6*x^5 + 2*x^4 + 3*x^3 + 3*x^2 + 5*x + 3)/(1 - x^9). - _Chai Wah Wu_, Jul 17 2016

%e For a(11) = 5 because 11+11^2+11^3 = 1463, and 1+4+6+3 = 14. Result is 5, which is the digital root of 14.

%t PadRight[{}, 120, {3, 5, 3, 3, 2, 6, 3, 8, 9}] (* _Vincenzo Librandi_, Jul 18 2016 *)

%o (Magma) &cat [[3,5,3,3,2,6,3,8,9]^^10]; // _Vincenzo Librandi_, Jul 18 2016

%Y Cf. A027444, A010888, A056992, A073636.

%K base,nonn,easy

%O 1,1

%A _Peter M. Chema_, Dec 07 2014

%E Edited: name specified, digital root link added, a comment rewritten and moved to formula section. - _Wolfdieter Lang_, Jan 05 2015