Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Dec 09 2014 00:39:38
%S 1,5,74,2028,83352,4607496,321156000,27064420704,2677510124928,
%T 304299947999232,39075730095810816,5595805388119057920,
%U 884245579070535235584,152843879008651568329728,28688663318934190485491712,5811091829207760774331662336,1263471121829937070180445552640
%N E.g.f.: exp(6*x*G(x)^5) / G(x) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
%F Let G(x) = 1 + x*G(x)^6 be the g.f. of A002295, then the e.g.f. A(x) of this sequence satisfies:
%F (1) A'(x)/A(x) = G(x)^5 + 4*G'(x)/G(x).
%F (2) A(x) = F(x/A(x)^5) where F(x) is the e.g.f. of A251696.
%F (3) A(x) = Sum_{n>=0} A251696(n)*(x/A(x)^5)^n/n! where A251696(n) = (4*n+1) * (5*n+1)^(n-2) * 6^n .
%F (4) [x^n/n!] A(x)^(5*n+1) = (4*n+1) * (5*n+1)^(n-1) * 6^n .
%F a(n) = Sum_{k=0..n} 6^k * n!/k! * binomial(6*n-k-2,n-k) * (5*k-1)/(5*n-1) for n>=0.
%F Recurrence: 5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*(1296*n^5 - 11394*n^4 + 40230*n^3 - 71274*n^2 + 63110*n - 21963)*a(n) = 144*(419904*n^10 - 5161320*n^9 + 28223964*n^8 - 90513612*n^7 + 188713962*n^6 - 267339204*n^5 + 259905051*n^4 - 169257762*n^3 + 67929146*n^2 - 12957136*n - 43050)*a(n-1) + 46656*(1296*n^5 - 4914*n^4 + 7614*n^3 - 5988*n^2 + 2156*n + 5)*a(n-2). - _Vaclav Kotesovec_, Dec 07 2014
%F a(n) ~ 4 * 6^(6*n-3/2) / 5^(5*n-1/2) * n^(n-1) / exp(n-1). - _Vaclav Kotesovec_, Dec 07 2014
%e E.g.f.: A(x) = 1 + 5*x + 74*x^2/2! + 2028*x^3/3! + 83352*x^4/4! + 4607496*x^5/5! +...
%e such that A(x) = exp(6*x*G(x)^5) / G(x)
%e where G(x) = 1 + x*G(x)^6 is the g.f. of A002295:
%e G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
%t Table[Sum[6^k * n!/k! * Binomial[6*n-k-2,n-k] * (5*k-1)/(5*n-1),{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Dec 07 2014 *)
%o (PARI) {a(n)=local(G=1); for(i=0, n, G=1+x*G^6 +x*O(x^n)); n!*polcoeff(exp(6*x*G^5)/G, n)}
%o for(n=0, 20, print1(a(n), ", "))
%o (PARI) {a(n) = sum(k=0, n, 6^k * n!/k! * binomial(6*n-k-2,n-k) * (5*k-1)/(5*n-1) )}
%o for(n=0, 20, print1(a(n), ", "))
%Y Cf. A251576, A251696, A002295.
%Y Cf. Variants: A243953, A251663, A251664, A251665, A251667, A251668, A251669, A251670.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Dec 07 2014