login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251663
E.g.f.: exp( 3*x*G(x)^2 ) / G(x), where G(x) = 1 + x*G(x)^3 is the g.f. A001764.
10
1, 2, 11, 120, 2061, 48918, 1487151, 55188108, 2419385625, 122367255498, 7014349322739, 449405251066368, 31826192109186789, 2468711973793223070, 208159999898813165079, 18957203713618483723092, 1854424578467714146269489, 193922780991931737971748882, 21588348501840566333913576795
OFFSET
0,2
FORMULA
Let G(x) = 1 + x*G(x)^3 be the g.f. of A001764, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^2 + G'(x)/G(x).
(2) A(x) = F(x/A(x)^2) where F(x) is the e.g.f. of A251693.
(3) A(x) = Sum_{n>=0} A251693(n)*(x/A(x)^2)^n/n! where A251693(n) = (n+1) * (2*n+1)^(n-2) * 3^n.
(4) [x^n/n!] A(x)^(2*n+1) = (n+1) * (2*n+1)^(n-1) * 3^n.
a(n) = Sum_{k=0..n} 3^k * n!/k! * binomial(3*n-k-2, n-k) * (2*k-1)/(2*n-1) for n>=0.
Recurrence: 2*(2*n-1)*(9*n^2 - 30*n + 19)*a(n) = 3*(81*n^4 - 432*n^3 + 756*n^2 - 393*n - 88)*a(n-1) - 27*(9*n^2 - 12*n - 2)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 3^(3*n-3/2) * n^(n-1) / (2^(2*n-1/2) * exp(n-1)). - Vaclav Kotesovec, Dec 07 2014
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 11*x^2/2! + 120*x^3/3! + 2061*x^4/4! + 48918*x^5/5! +...
such that A(x) = exp(3*x*G(x)^2) / G(x)
where G(x) = 1 + x*G(x)^3 is the g.f. of A001764:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
The e.g.f. satisfies:
A(x) = 1 + 2*x/A(x)^2 + 27*x^2/(2!*A(x)^4) + 756*x^3/(3!*A(x)^6) + 32805*x^4/(4!*A(x)^8) + 1940598*x^5/(5!*A(x)^10) + 145746783*x^6/(6!*A(x)^12) + 13286025000*x^7/(7!*A(x)^14) +...+ (n+1)*(2*n+1)^(n-2)*3^n * x^n/(n!*A(x)^(2*n)) +...
MATHEMATICA
Table[Sum[3^k * n!/k! * Binomial[3*n-k-2, n-k] * (2*k-1)/(2*n-1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 07 2014 *)
PROG
(PARI) {a(n)=local(G=1); for(i=0, n, G=1+x*G^3 +x*O(x^n)); n!*polcoeff(exp(3*x*G^2)/G, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = sum(k=0, n, 3^k * n!/k! * binomial(3*n-k-2, n-k) * (2*k-1)/(2*n-1) )}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 07 2014
STATUS
approved