%I #11 Dec 09 2014 08:13:13
%S 1,4,6,12,15,18,28,32,36,40,55,60,65,70,75,96,102,108,114,120,126,154,
%T 161,168,175,182,189,196,232,240,248,256,264,272,280,288,333,342,351,
%U 360,369,378,387,396,405,460,470,480,490,500,510,520,530
%N Column sums of the n X n square array filled with numbers from 1 to n^2, row by row, from left to right.
%C This triangle has been considered by _Kival Ngaokrajang_ as a companion of A241016. See the link given there, the second triangle.
%F T(n, k) = sum(n*(j-1)+ k, j=1..n), n >= k >= 1.
%F T(n, k) = n*(binomial(n+1, 2) + (k-n)).
%e The n=4 square array is:
%e 1 2 3 4
%e 5 6 7 8
%e 9 10 11 12
%e 13 14 15 16
%e and the column sums are 28 32 36 40, which appear
%e in row n=4 of the triangle T.
%e The triangle T(n,k) begins:
%e n\k 1 2 3 4 5 6 7 8 9 10 ...
%e 1: 1
%e 2: 4 6
%e 3: 12 15 18
%e 4: 28 32 36 40
%e 5: 55 60 65 70 75
%e 6: 96 102 108 114 120 126
%e 7: 154 161 168 175 182 189 196
%e 8: 232 240 248 256 264 272 280 288
%e 9: 333 342 351 360 369 378 387 396 405
%e 10: 460 470 480 490 500 510 520 530 540 550
%e ...
%Y Cf. A002411 (main diagonal), A006000 (column k=1), A241016.
%K nonn,easy,tabl
%O 1,2
%A _Wolfdieter Lang_, Dec 09 2014