login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251582
G.f. satisfies: A(x) = A(2*x^2 + x^3)/(1-x).
3
1, 1, 3, 4, 16, 28, 63, 111, 391, 907, 2187, 4555, 10843, 24059, 53667, 113503, 291971, 755271, 1951470, 4751194, 11609612, 27858363, 66082059, 152816667, 355501570, 832148914, 1961821400, 4601053219, 10765373983, 25089663963, 58267298334, 134371615378, 311517418324, 733798887871
OFFSET
0,3
COMMENTS
Conjecture: limit of a(n+1)/a(n) = sqrt(2) + 1.
LINKS
Vaclav Kotesovec, Graph a(n+1)/a(n)
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 4*x^3 + 16*x^4 + 28*x^5 + 63*x^6 + 111*x^7 +...
such that A(x) = A(2*x^2 + x^3)/(1-x), where:
A(2*x^2+x^3) = 1 + 2*x^2 + x^3 + 12*x^4 + 12*x^5 + 35*x^6 + 48*x^7 + 280*x^8 + 516*x^9 + 1280*x^10 + 2368*x^11 + 6288*x^12 + 13216*x^13 + 29608*x^14 + 59836*x^15 + 178468*x^16 + 463300*x^17 + 1196199*x^18 +...
MATHEMATICA
m = 34; A[_] = 1; Do[A[x_] = A[2x^2 + x^3]/(1-x) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, #binary(n)+1, A=subst(A, x, 2*x^2+x^3)/(1-x +x*O(x^n))); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
Sequence in context: A316194 A123773 A290433 * A328773 A330693 A329541
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 31 2015
STATUS
approved