login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length n+2 0..3 arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero
1

%I #4 Dec 02 2014 17:33:11

%S 16,116,380,1888,7458,31980,127566,520568,2080650,8370976,33475854,

%T 134136344,536498498,2147099168,8588150878,34357874584,137430314336,

%U 549746688148,2198981195384,8796047678504,35184165954884,140737260054372

%N Number of length n+2 0..3 arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero

%C Column 3 of A251428

%H R. H. Hardin, <a href="/A251423/b251423.txt">Table of n, a(n) for n = 1..109</a>

%F Empirical: a(n) = 11*a(n-1) -40*a(n-2) +28*a(n-3) +156*a(n-4) -332*a(n-5) +89*a(n-6) -263*a(n-7) +2117*a(n-8) -2247*a(n-9) -4433*a(n-10) +9779*a(n-11) -1921*a(n-12) +1315*a(n-13) -27632*a(n-14) +27440*a(n-15) +35510*a(n-16) -66532*a(n-17) +23084*a(n-18) -38208*a(n-19) +116256*a(n-20) -72640*a(n-21) -64384*a(n-22) +115840*a(n-23) -109312*a(n-24) +125184*a(n-25) -120064*a(n-26) +72704*a(n-27) -25600*a(n-28) +4096*a(n-29)

%e Some solutions for n=7

%e ..2....0....2....2....2....1....0....3....1....1....2....1....0....0....1....0

%e ..2....3....3....0....3....2....2....1....0....1....2....1....0....0....0....0

%e ..2....0....3....2....1....0....2....1....1....3....3....3....0....1....2....0

%e ..1....3....3....3....1....1....0....3....1....0....2....0....1....3....2....1

%e ..0....2....2....3....0....2....3....2....1....2....3....3....3....2....1....3

%e ..2....2....3....0....2....0....0....2....3....1....1....0....1....1....1....3

%e ..1....2....2....1....1....1....2....2....0....0....0....3....2....1....1....2

%e ..0....2....2....2....0....0....2....1....2....3....3....0....2....0....1....2

%e ..1....2....3....0....3....1....3....0....1....2....3....2....1....2....1....2

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 02 2014