The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A251418 Floor((n^2+7n-23)/14). 2
 -2, -2, -1, 0, 1, 2, 3, 5, 6, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 36, 40, 43, 47, 51, 55, 59, 63, 68, 72, 77, 82, 87, 92, 97, 103, 108, 114, 120, 126, 132, 138, 145, 151, 158, 165, 172, 179, 186, 194, 201, 209, 217, 225, 233, 241, 250, 258, 267, 276 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This is conjectured to be the value of the dominance number of the triangle grid graph for n >= 14 - see A251419. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Stan Wagon, Graph Theory Problems from Hexagonal and Traditional Chess, The College Mathematics Journal, Vol. 45, No. 4, September 2014 pp. 278-287. Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,1,-2,1). FORMULA G.f.: (3*x^8-3*x^7-x^2-2*x+2) / ((x-1)^3*(x^6+x^5+x^4+x^3+x^2+x+1)). - Colin Barker, Jul 10 2015 MATHEMATICA Table[Floor[(n^2 + 7 n - 23) / 14], {n, 0, 80}] (* Vincenzo Librandi, Dec 04 2014 *) LinearRecurrence[{2, -1, 0, 0, 0, 0, 1, -2, 1}, {-2, -2, -1, 0, 1, 2, 3, 5, 6}, 60] (* Harvey P. Dale, Mar 19 2020 *) PROG (MAGMA) [Floor((n^2+7*n-23)/14): n in [0..60]]; // Vincenzo Librandi, Dec 04 2014 (PARI) Vec((3*x^8-3*x^7-x^2-2*x+2)/((x-1)^3*(x^6+x^5+x^4+x^3+x^2+x+1)) + O(x^100)) \\ Colin Barker, Jul 10 2015 CROSSREFS Cf. A251419. Sequence in context: A296239 A039800 A309416 * A172101 A301365 A109246 Adjacent sequences:  A251415 A251416 A251417 * A251419 A251420 A251421 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Dec 04 2014 EXTENSIONS More terms from Vincenzo Librandi, Dec 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 17:36 EDT 2021. Contains 343156 sequences. (Running on oeis4.)