login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having the sum of its diagonal elements less than the absolute difference of its antidiagonal elements
8

%I #4 Dec 02 2014 13:47:13

%S 226,3205,3205,45542,165498,45542,647154,8558283,8558283,647154,

%T 9195809,442476530,1606734480,442476530,9195809,130668665,22875877611,

%U 301644677965,301644677965,22875877611,130668665,1856748750

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having the sum of its diagonal elements less than the absolute difference of its antidiagonal elements

%C Table starts

%C .....226........3205..........45542.............647154...............9195809

%C ....3205......165498........8558283..........442476530...........22875877611

%C ...45542.....8558283.....1606734480.......301644677965........56631282128854

%C ..647154...442476530...301644677965....205729518595782....140311657486510902

%C .9195809.22875877611.56631282128854.140311657486510902.347621346436641654516

%H R. H. Hardin, <a href="/A251402/b251402.txt">Table of n, a(n) for n = 1..112</a>

%F Empirical for column k:

%F k=1: a(n) = 16*a(n-1) -30*a(n-2) +69*a(n-3) -62*a(n-4) +30*a(n-5) -8*a(n-6) +a(n-7)

%F k=2: [order 25]

%F k=3: [order 81]

%e Some solutions for n=2 k=4

%e ..0..0..1..0..2....2..2..2..2..1....0..0..0..3..3....2..0..0..1..1

%e ..0..2..2..2..1....0..0..2..0..3....0..0..2..3..2....0..0..0..1..0

%e ..2..0..0..3..1....0..0..2..3..0....0..0..3..2..2....0..0..1..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 02 2014