Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Mar 20 2018 00:55:46
%S 695,17969,464393,12002283,310199103,8017100977,207202101873,
%T 5355141623323,138403720518311,3577046360518609,92448820142650873,
%U 2389341228591410219,61752562096926105327,1595995950642355498897
%N Number of (n+1) X (2+1) 0..2 arrays with every 2 X 2 subblock summing to 1, 2, 3, 4, 5, 6, or 7.
%C Column 2 of A251373.
%H R. H. Hardin, <a href="/A251367/b251367.txt">Table of n, a(n) for n = 1..210</a>
%H Robert Israel, <a href="/A251367/a251367.pdf">Maple-assisted proof of empirical formula</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (24,49,-34).
%F Empirical: a(n) = 24*a(n-1) + 49*a(n-2) - 34*a(n-3).
%F From _Robert Israel_, Mar 19 2018: (Start)
%F Empirical formula verified: see link.
%F G.f.: (695*x+1289*x^2-918*x^3)/(1-24*x-49*x^2+34*x^3). (End)
%e Some solutions for n=2:
%e 2 1 1 2 0 2 0 2 1 2 2 2 0 0 2 0 0 2 0 0 2
%e 0 0 0 1 0 0 1 0 1 0 1 1 1 1 2 1 2 1 1 1 1
%e 1 2 2 2 0 1 1 2 1 2 0 2 0 0 1 1 0 1 0 1 0
%p f:= gfun:-rectoproc({a(n) = 24*a(n-1) +49*a(n-2) -34*a(n-3),a(1)=695,a(2)=17969, a(3)=464393},a(n),remember):
%p map(f, [$1..30]); # _Robert Israel_, Mar 19 2018
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 01 2014