The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A251343 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X2 subblock summing to a nonzero multiple of 3 8
 85, 455, 455, 2450, 3315, 2450, 13275, 24714, 24714, 13275, 72375, 189129, 263824, 189129, 72375, 397000, 1487375, 3014066, 3014066, 1487375, 397000, 2190625, 12022920, 36988354, 55048995, 36988354, 12022920, 2190625, 12156875, 99776859 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Table starts ......85......455.......2450........13275..........72375............397000 .....455.....3315......24714.......189129........1487375..........12022920 ....2450....24714.....263824......3014066.......36988354.........486098916 ...13275...189129....3014066.....55048995.....1151715397.......27005232676 ...72375..1487375...36988354...1151715397....43807665267.....1921884757552 ..397000.12022920..486098916..27005232676..1921884757552...159630812543048 .2190625.99776859.6775415354.687109914883.91970680872031.14450351430729220 LINKS R. H. Hardin, Table of n, a(n) for n = 1..143 FORMULA Empirical for column k: k=1: a(n) = 10*a(n-1) -20*a(n-2) -25*a(n-3) k=2: [order 7] k=3: [order 17] k=4: [order 41] EXAMPLE Some solutions for n=2 k=4 ..2..2..2..0..1....1..0..0..3..3....2..3..0..3..1....1..0..2..1..0 ..0..2..0..1..1....3..2..1..2..1....1..0..0..0..2....2..0..1..2..0 ..2..2..2..3..1....1..3..0..3..0....2..0..3..0..1....1..3..2..1..3 CROSSREFS Sequence in context: A045017 A297399 A020212 * A251336 A262425 A264425 Adjacent sequences: A251340 A251341 A251342 * A251344 A251345 A251346 KEYWORD nonn,tabl AUTHOR R. H. Hardin, Dec 01 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 18:55 EDT 2024. Contains 374981 sequences. (Running on oeis4.)