Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Dec 01 2014 18:42:13
%S 220,1982,17216,157312,1405454,12770802,114913804,1040818716,
%T 9388632290,84916233072,766719557970,6930512776886,62601134362556,
%U 565720424690948,5110812449111474,46181028008719378,417235865422683956
%N Number of (n+1)X(4+1) 0..1 arrays with every 2X2 subblock having one or two 1s
%C Column 4 of A251326
%H R. H. Hardin, <a href="/A251322/b251322.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 6*a(n-1) +67*a(n-2) -299*a(n-3) -1066*a(n-4) +4715*a(n-5) +3684*a(n-6) -22554*a(n-7) -2351*a(n-8) +42798*a(n-9) -2598*a(n-10) -36276*a(n-11) +3532*a(n-12) +14102*a(n-13) -1392*a(n-14) -2361*a(n-15) +222*a(n-16) +145*a(n-17) -11*a(n-18) -2*a(n-19)
%e Some solutions for n=4
%e ..0..0..0..1..0....0..1..1..0..1....1..0..0..0..0....0..0..1..0..1
%e ..0..1..0..0..1....0..0..0..0..0....0..0..1..0..1....1..0..1..0..1
%e ..1..0..1..0..0....0..1..0..1..0....1..0..0..1..0....0..0..0..0..0
%e ..1..0..0..1..1....1..0..1..0..0....1..0..1..0..1....1..1..1..0..1
%e ..0..1..1..0..0....1..0..0..0..1....0..1..0..0..1....0..0..0..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 01 2014