login
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X2 subblock summing to 3 6 or 9
8

%I #4 Dec 01 2014 11:52:35

%S 84,444,444,2356,3140,2356,12556,22536,22536,12556,67204,164480,

%T 223164,164480,67204,361244,1221748,2302844,2302844,1221748,361244,

%U 1950036,9240612,24846540,34973116,24846540,9240612,1950036,10570156,71163896

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X2 subblock summing to 3 6 or 9

%C Table starts

%C .......84.......444........2356.........12556...........67204............361244

%C ......444......3140.......22536........164480.........1221748...........9240612

%C .....2356.....22536......223164.......2302844........24846540.........280654684

%C ....12556....164480.....2302844......34973116.......579830068.......10472034724

%C ....67204...1221748....24846540.....579830068.....15595789732......475709341972

%C ...361244...9240612...280654684...10472034724....475709341972....25252159754868

%C ..1950036..71163896..3313122288..203797267488..15983177343168..1492135910643272

%C .10570156.557726448.40698859196.4207802278096.574357430022192.94429432665791560

%H R. H. Hardin, <a href="/A251300/b251300.txt">Table of n, a(n) for n = 1..112</a>

%F Empirical for column k:

%F k=1: a(n) = 10*a(n-1) -21*a(n-2) -20*a(n-3)

%F k=2: [order 7]

%F k=3: [order 18]

%F k=4: [order 44]

%e Some solutions for n=2 k=4

%e ..2..0..3..3..0....2..3..0..2..1....2..3..0..3..3....1..2..1..2..1

%e ..3..1..2..1..2....1..3..0..1..2....1..0..0..3..0....0..0..0..0..0

%e ..2..3..0..3..3....0..2..1..1..2....0..2..1..2..1....1..2..1..2..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 01 2014