Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 08 2022 08:46:10
%S 1,2,3,6,8,13,16,24,28,40,45,61,68,89,97,124,134,167,179,219,233,281,
%T 297,353,372,437,458,533,557,642,669,765,795,903,936,1056,1093,1226,
%U 1266,1413,1457,1618,1666,1842,1894,2086,2142,2350,2411,2636,2701,2944
%N Expansion of (1 + 2*x + x^2 + x^3) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) in powers of x.
%H G. C. Greubel, <a href="/A251260/b251260.txt">Table of n, a(n) for n = 0..2500</a>
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,1,0,-2,-2,0,1,2,0,-1).
%F a(n) = A165188(n+1) + A254708(n-1) = A254594(n-1) + A008763(n+4) for all n in Z.
%F 0 = a(n) - 2*a(n+2) - a(n+3) + 2*a(n+5) + 2*a(n+6) - a(n+8) - 2*a(n+9) + a(n+11) for all n in Z.
%F a(2*n) = A254875(n) for all n in Z.
%F G.f.: (1 + 2*x + x^2 + x^3) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)).
%e G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 8*x^4 + 13*x^5 + 16*x^6 + 24*x^7 + ...
%t a[ n_] := Quotient[ 5 n^3 + If[ OddQ[n], 66 n^2 + 249 n, 57 n^2 + 204 n] + 288, 288];
%t a[ n_] := Length @ FindInstance[ {x > u, u > v, v > w, w >= 0, x + u == n + 6, (u + v < x + w && k == 0) || (u + v > x + w && x + u + v + w == 2 k + 1)}, {x, u, v, w, k}, Integers, 10^9];
%o (PARI) {a(n) = (5*n^3 + if( n%2, 66*n^2 + 249*n, 57*n^2 + 204*n) + 288) \ 288};
%o (PARI) {a(n) = polcoeff( if( n<0, n = -8-n; -(1 + x + 2*x^2 + x^3), 1 + 2*x + x^2 + x^3) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n)};
%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 + 2*x+x^2+x^3)/((1-x^2)^2*(1-x^3)*(1-x^4)))); // _G. C. Greubel_, Aug 03 2018
%Y Cf. A008763, A165188, A254594, A254708, A254875.
%K nonn,easy
%O 0,2
%A _Michael Somos_, Mar 20 2015