%I #4 Dec 01 2014 07:34:22
%S 394,3602,21088,192442,1215600,10753448,71459218,612889014,4229034766,
%T 35355603854,250941567996,2056162754024,14904673137346,
%U 120250782584654,885430871478960,7060080136304672,52591558418232374,415635038513014546
%N Number of (n+1)X(6+1) 0..1 arrays with every 2X2 subblock having a single 1 or two 1s on the same edge
%C Column 6 of A251258
%H R. H. Hardin, <a href="/A251256/b251256.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 10*a(n-1) +88*a(n-2) -1066*a(n-3) -2400*a(n-4) +43830*a(n-5) +13298*a(n-6) -943862*a(n-7) +547712*a(n-8) +11941908*a(n-9) -12796626*a(n-10) -93281376*a(n-11) +129279020*a(n-12) +457898585*a(n-13) -740494188*a(n-14) -1411719638*a(n-15) +2571931219*a(n-16) +2696954146*a(n-17) -5536013172*a(n-18) -3101668692*a(n-19) +7418845564*a(n-20) +2005636085*a(n-21) -6136576490*a(n-22) -582560336*a(n-23) +3057285154*a(n-24) -36877834*a(n-25) -868658898*a(n-26) +66666496*a(n-27) +125088368*a(n-28) -14449904*a(n-29) -6753024*a(n-30) +994560*a(n-31)
%e Some solutions for n=4
%e ..0..0..1..1..0..1..1....0..1..1..0..1..0..1....1..0..0..0..0..0..0
%e ..1..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..1..1..1..1..1
%e ..1..0..1..1..1..1..1....1..0..1..0..1..1..0....1..0..0..0..0..0..0
%e ..0..0..0..0..0..0..0....0..0..1..0..0..0..0....1..0..1..1..1..0..1
%e ..0..1..1..0..1..1..1....1..0..1..0..1..0..1....0..0..0..0..0..0..1
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 01 2014