Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 20 2018 00:30:57
%S 4,5,11,40,124,187,273,313,505,747,751,1280,1478,1563,1841,2386,3130,
%T 3134,4196,4493,4497,5455,6002,6877,8158,9047,9276,10190,10194,11157,
%U 14182,15086,16762,16766,19758,20051,21749,23435,24601,26398,28655,28659,32636
%N Indices of squares of primes in A098550.
%C A098550(a(n)) = A001248(n);
%C A062799(A098550(a(n))) = 2.
%H Chai Wah Wu, <a href="/A251240/b251240.txt">Table of n, a(n) for n = 1..175</a>
%o (Haskell)
%o a251240 n = a251240_list !! (n-1)
%o a251240_list = filter ((== 2) . a062799 . fromIntegral . a098550) [1..]
%o (Python)
%o from gmpy2 import gcd, is_square, is_prime, isqrt
%o A251240_list, l1, l2, s, b = [], 3, 2, 4, {}
%o for n in range(4,10**4):
%o ....i = s
%o ....while True:
%o ........if not i in b and gcd(i,l1) == 1 and gcd(i,l2) > 1:
%o ............l2, l1, b[i] = l1, i, 1
%o ............while s in b:
%o ................b.pop(s)
%o ................s += 1
%o ............if is_square(i) and is_prime(isqrt(i)):
%o ................A251240_list.append(n)
%o ............break
%o ........i += 1 # _Chai Wah Wu_, Dec 06 2014
%Y Cf. A098550, A001248, A062799, subsequence of A251241.
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, Dec 02 2014