login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices of prime numbers in A098550.
15

%I #27 Jul 26 2024 05:21:47

%S 2,3,9,15,22,23,30,43,51,61,62,79,87,88,101,114,127,132,142,153,158,

%T 167,175,194,204,215,222,233,238,247,274,283,296,301,324,329,338,355,

%U 364,375,386,393,414,423,430,435,452,479,490,497,506,523,528,541,550

%N Indices of prime numbers in A098550.

%C It is conjectured that every prime appears in A098550, and if so then A098550(a(n)) = A000040(n). [Comment edited by _N. J. A. Sloane_, Dec 15 2014] [It is now known that every prime appears in A098550, although it is not known that they appear in their right order. - _N. J. A. Sloane_, Dec 25 2014]

%C A010051(A098550(a(n))) = 1; A049084(A098550(a(n))) > 0.

%C Conjecture: a(n) = A251541(n) + 2 for n > 4. - _Reinhard Zumkeller_, Dec 16 2014

%C A253049(n) = A098550(a(n)+1). - _Reinhard Zumkeller_, Dec 29 2014

%H Reinhard Zumkeller, <a href="/A251239/b251239.txt">Table of n, a(n) for n = 1..10000</a>

%t a098550[lst_List] :=

%t Block[{k = 4},

%t While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 ||

%t MemberQ[lst, k], k++]; Append[lst, k]];

%t a251239[n_] :=

%t Flatten@Position[Nest[a098550, {1, 2, 3}, n], _Integer?PrimeQ]; a251239[550] (* _Michael De Vlieger_, Dec 23 2014, based on _Robert G. Wilson v_ at A098550 *)

%o (Haskell)

%o a251239 n = a251239_list !! (n-1)

%o a251239_list = filter ((== 1) . a010051' . a098550) [1..]

%Y Cf. A098550, A010051, A049084, A251392, A247253 (first differences), A251595, A251541, A253049, A253048.

%Y This is a subsequence of A251391 and A251241,

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Dec 02 2014