login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251230
Number of (n+1) X (2+1) 0..3 arrays with every 2 X 2 subblock summing to 6 and no 2 X 2 subblock having exactly two nonzero entries.
1
110, 270, 694, 1870, 5194, 14786, 42850, 125934, 374166, 1121566, 3386570, 10289714, 31434338, 96493518, 297491174, 920787166, 2860264522, 8914266818, 27866446818, 87355159854, 274542478518, 864878298334, 2730499054218
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 11*a(n-1) - 42*a(n-2) + 49*a(n-3) + 69*a(n-4) - 184*a(n-5) + 18*a(n-6) + 160*a(n-7) - 32*a(n-8) - 48*a(n-9).
Empirical g.f.: 2*x*(55 - 470*x + 1172*x^2 + 93*x^3 - 3524*x^4 + 1898*x^5 + 3268*x^6 - 1352*x^7 - 1200*x^8) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - x - x^2)*(1 - 2*x - 2*x^2)*(1 - 2*x - 4*x^2)). - Colin Barker, Nov 27 2018
EXAMPLE
Some solutions for n=4:
..1..1..1....2..0..2....0..1..0....2..0..2....3..1..3....1..1..0....3..1..1
..3..1..3....2..2..2....3..2..3....2..2..2....1..1..1....2..2..3....0..2..2
..2..0..2....1..1..1....0..1..0....0..2..0....3..1..3....1..1..0....2..2..0
..1..3..1....1..3..1....3..2..3....1..3..1....1..1..1....2..2..3....0..2..2
..2..0..2....1..1..1....0..1..0....2..0..2....1..3..1....1..1..0....3..1..1
CROSSREFS
Column 2 of A251236.
Sequence in context: A103652 A032614 A120727 * A264447 A134213 A028995
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 30 2014
STATUS
approved