login
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no 2X2 subblock having the minimum of its diagonal elements greater than the absolute difference of its antidiagonal elements
9

%I #4 Nov 30 2014 20:42:32

%S 14,49,49,171,305,171,597,1892,1892,597,2084,11753,20782,11753,2084,

%T 7275,72985,228689,228689,72985,7275,25396,453273,2515011,4462968,

%U 2515011,453273,25396,88654,2814985,27662994,87024544,87024544,27662994,2814985

%N T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no 2X2 subblock having the minimum of its diagonal elements greater than the absolute difference of its antidiagonal elements

%C Table starts

%C ....14.......49........171..........597............2084..............7275

%C ....49......305.......1892........11753...........72985............453273

%C ...171.....1892......20782.......228689.........2515011..........27662994

%C ...597....11753.....228689......4462968........87024544........1697323707

%C ..2084....72985....2515011.....87024544......3007738372......103986727042

%C ..7275...453273...27662994...1697323707....103986727042.....6373427948731

%C .25396..2814985..304255924..33102432698...3594807908974...390586327228567

%C .88654.17482154.3346446223.645599385182.124275144041759.23937316421928928

%H R. H. Hardin, <a href="/A251228/b251228.txt">Table of n, a(n) for n = 1..449</a>

%F Empirical for column k:

%F k=1: a(n) = 3*a(n-1) +2*a(n-2) -a(n-3)

%F k=2: a(n) = 5*a(n-1) +9*a(n-2) -8*a(n-3) -8*a(n-4) +3*a(n-5)

%F k=3: [order 8]

%F k=4: [order 17]

%F k=5: [order 29]

%F k=6: [order 54] for n>55

%F k=7: [order 99] for n>101

%e Some solutions for n=3 k=4

%e ..0..0..0..0..1....0..0..0..1..0....0..0..1..0..1....0..0..0..1..1

%e ..1..0..0..1..0....0..1..1..0..0....0..0..1..0..1....0..1..0..1..0

%e ..0..0..0..1..1....0..0..0..0..1....0..0..1..0..0....1..1..0..0..0

%e ..1..0..1..1..0....1..1..0..1..0....0..0..0..0..0....1..0..0..0..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 30 2014