login
Number of (n+1) X (4+1) 0..1 arrays with no 2 X 2 subblock having the minimum of its diagonal elements less than the absolute difference of its antidiagonal elements.
1

%I #6 Feb 22 2022 14:41:27

%S 164,1135,8976,73170,599869,4923412,40413851,331748759,2723267431,

%T 22354871755,183507589250,1506385040601,12365677555788,

%U 101507905283712,833262433540456,6840120381846407,56149473064044790,460922199881686977

%N Number of (n+1) X (4+1) 0..1 arrays with no 2 X 2 subblock having the minimum of its diagonal elements less than the absolute difference of its antidiagonal elements.

%C Column 4 of A251201.

%H R. H. Hardin, <a href="/A251197/b251197.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) +48*a(n-2) +59*a(n-3) -261*a(n-4) -268*a(n-5) +610*a(n-6) +222*a(n-7) -781*a(n-8) +127*a(n-9) +107*a(n-10) +25*a(n-11) -11*a(n-12) -5*a(n-13) +a(n-14) for n>16.

%e Some solutions for n=4

%e ..1..0..1..1..1....1..0..1..0..1....1..1..1..1..1....1..1..1..1..0

%e ..1..1..1..1..1....0..1..1..1..1....1..1..1..1..0....1..0..1..0..1

%e ..0..1..0..1..0....1..1..1..0..1....0..1..1..1..1....1..1..1..1..1

%e ..1..1..1..1..1....1..0..1..1..1....1..0..1..1..0....0..1..1..0..1

%e ..1..1..0..1..0....1..1..1..1..1....1..1..1..1..1....1..1..0..1..0

%Y Cf. A251201.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 30 2014