%I #4 Nov 30 2014 17:45:45
%S 136,1192,1192,10950,28598,10950,100462,710438,710438,100462,923568,
%T 17822017,49016166,17822017,923568,8489391,447045247,3387331664,
%U 3387331664,447045247,8489391,78041038,11217458242,234762060017
%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having the minimum of its diagonal elements less than the absolute difference of its antidiagonal elements
%C Table starts
%C .....136........1192..........10950............100462...............923568
%C ....1192.......28598.........710438..........17822017............447045247
%C ...10950......710438.......49016166........3387331664.........234762060017
%C ..100462....17822017.....3387331664......648299061766......124211482822101
%C ..923568...447045247...234762060017...124211482822101....65874570824121892
%C .8489391.11217458242.16266032347068.23810611569424562.34940908062684870572
%H R. H. Hardin, <a href="/A251175/b251175.txt">Table of n, a(n) for n = 1..144</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 13]
%F k=2: [order 39]
%e Some solutions for n=2 k=4
%e ..1..0..0..2..3....1..0..2..0..3....2..0..2..3..3....1..0..2..1..2
%e ..0..0..2..1..2....0..2..2..3..0....0..2..3..3..0....0..2..1..2..1
%e ..0..2..0..3..2....2..1..2..2..2....2..1..3..0..2....2..1..3..2..2
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 30 2014