login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = Number of (n+1) X (k+1) 0..2 arrays with every 2 X 2 subblock summing to 4 and no 2 X 2 subblock having exactly two nonzero entries.
8

%I #11 Aug 10 2015 17:56:59

%S 13,27,27,53,49,53,107,87,87,107,213,161,143,161,213,427,299,247,247,

%T 299,427,853,565,433,401,433,565,853,1707,1075,777,667,667,777,1075,

%U 1707,3413,2065,1413,1141,1061,1141,1413,2065,3413,6827,3991,2607,1987,1743

%N T(n,k) = Number of (n+1) X (k+1) 0..2 arrays with every 2 X 2 subblock summing to 4 and no 2 X 2 subblock having exactly two nonzero entries.

%C Table starts:

%C ...13...27...53...107...213...427...853..1707..3413...6827..13653..27307..54613

%C ...27...49...87...161...299...565..1075..2065..3991...7761..15163..29749..58563

%C ...53...87..143...247...433...777..1413..2607..4863...9167..17433..33417..64493

%C ..107..161..247...401...667..1141..1987..3521..6327..11521..21227..39541..74387

%C ..213..299..433...667..1061..1743..2925..5003..8689..15307..27317..49359..90237

%C ..427..565..777..1141..1743..2763..4491..7453.12569..21501..37255..65355.116035

%C ..853.1075.1413..1987..2925..4491..7101.11491.18917..31587..53389..91275.157789

%C .1707.2065.2607..3521..5003..7453.11491.18193.29359..48081..79675.133405.225555

%C .3413.3991.4863..6327..8689.12569.18917.29359.46575..75087.122521.201881.335501

%C .6827.7761.9167.11521.15307.21501.31587.48081.75087.119441.192507.313341.514067

%H R. H. Hardin, <a href="/A251149/b251149.txt">Table of n, a(n) for n = 1..364</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +2*a(n-2)

%F k=2: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)

%F k=3: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)

%F k=4: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)

%F k=5: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)

%F k=6: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)

%F k=7: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +2*a(n-5)

%e Some solutions for n=4, k=4:

%e ..0..1..0..2..1....1..0..1..1..1....1..0..1..1..2....2..1..2..1..1

%e ..1..2..1..1..0....1..2..1..1..1....1..2..1..1..0....0..1..0..1..1

%e ..1..0..1..1..2....1..0..1..1..1....0..1..0..2..1....1..2..1..2..0

%e ..1..2..1..1..0....1..2..1..1..1....1..2..1..1..0....0..1..0..1..1

%e ..1..0..1..1..2....1..0..1..1..1....0..1..0..2..1....2..1..2..1..1

%Y Column 1 is A048573(n+2).

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 30 2014