login
A251100
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no 2X2 subblock having its minimum diagonal element less than its minimum antidiagonal element
8
13, 41, 41, 129, 212, 129, 406, 1109, 1109, 406, 1278, 5817, 9597, 5817, 1278, 4023, 30517, 82814, 82814, 30517, 4023, 12664, 160086, 713769, 1175519, 713769, 160086, 12664, 39865, 839758, 6151051, 16697127, 16697127, 6151051, 839758, 39865
OFFSET
1,1
COMMENTS
Table starts
.....13........41.........129...........406.............1278...............4023
.....41.......212........1109..........5817............30517.............160086
....129......1109........9597.........82814...........713769............6151051
....406......5817.......82814.......1175519.........16697127..........237288487
...1278.....30517......713769......16697127........391088995.........9160138107
...4023....160086.....6151051.....237288487.......9160138107.......353489877714
..12664....839758....53009570....3372537762.....214512524583.....13640572890821
..39865...4405079...456842112...47933018061....5023196973684....526395665662695
.125491..23107524..3937123328..681254534234..117627015646158..20314343818684906
.395033.121214121.33930621210.9682407527191.2754453306431041.783961045672945429
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2) +a(n-3)
k=2: a(n) = 7*a(n-1) -11*a(n-2) +10*a(n-3) -3*a(n-4)
k=3: [order 9]
k=4: [order 17]
k=5: [order 31]
k=6: [order 57] for n>58
EXAMPLE
Some solutions for n=3 k=4
..0..0..1..1..0....0..1..1..0..1....1..1..1..0..0....0..0..1..1..0
..0..0..0..1..1....0..1..1..0..1....0..0..1..0..0....1..0..0..0..0
..0..0..0..0..1....0..0..1..0..0....0..0..0..0..0....0..0..0..1..0
..0..1..1..0..1....1..0..1..1..1....1..0..0..1..0....0..0..0..1..0
CROSSREFS
Column 1 is A052529(n+2)
Sequence in context: A319088 A041755 A229768 * A044968 A108226 A337146
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 29 2014
STATUS
approved