Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Jun 29 2021 13:34:21
%S 3,2,2,1,2,1,2,1,1,2,1,2,1,1,1,1,2,2,1,1,1,2,2,1,1,1,1,2,2,2,1,1,2,1,
%T 2,1,1,1,2,1,2,1,1,2,1,1,1,2,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,2,1,1,1,
%U 1,1,1,1,2,1,1,1,1,2,1,1,1,2,1,1,2,1,2,1,1,2,1,1,1,1,1,1,1,1,1,1
%N a(n) is the number of primes in the n-th group of consecutive primes among the odd numbers.
%C Explanation:
%C 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,... = Odd numbers
%C ^ ^ ^ ^ ^ ^ ^ ^ = Prime numbers
%C <---3---> <--2--> <--2--> <-1-> = Primes beside other primes divided into groups of how many there are.
%C Note that the first group (3, 5 and 7) is the only group of 3. Therefore the rest of the sequence only consists of 1's and 2's.
%C Essentially the same as A175632. - _Robert Israel_, Mar 29 2015
%H Harvey P. Dale, <a href="/A251092/b251092.txt">Table of n, a(n) for n = 1..1000</a>
%p N:= 1000: # to use the first N+1 odd numbers
%p L:= map(t -> isprime(2*t+1), [$1..N]):
%p Starts:= [1, op(select(i -> L[i] and not L[i-1], [$2..N]))]:
%p Ends:= select(i -> L[i] and not L[i+1], [$1..N-1]):
%p seq(Ends[i]-Starts[i]+1,i=1..nops(Ends)); # _Robert Israel_, Mar 27 2015
%t Length /@ Split[Select[2 Range@ 1200 - 1, PrimeQ], #2 - #1 == 2 &] (* _Michael De Vlieger_, Mar 20 2015 *)
%t Length/@DeleteCases[Split[Table[If[PrimeQ[n],1,0],{n,3,1001,2}]],_?(FreeQ[ #,1]&)] (* _Harvey P. Dale_, Jun 29 2021 *)
%Y Cf. A000040 (prime numbers), A005408 (odd numbers), A001097 (twin primes), A175632.
%K nonn
%O 1,1
%A _Arthur Edward Chadwick_, Mar 20 2015