login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+1)X(7+1) 0..3 arrays with no 2X2 subblock having the sum of its diagonal elements greater than the absolute difference of its antidiagonal elements
1

%I #4 Nov 29 2014 18:02:37

%S 29759,118925,237143,533327,1045337,2129846,4118693,8207451,16293926,

%T 33460774,69949629,150556699,329921966,735973997,1659208781,

%U 3772267028,8617309611,19752084140,45358074700,104286805752,239930547292

%N Number of (n+1)X(7+1) 0..3 arrays with no 2X2 subblock having the sum of its diagonal elements greater than the absolute difference of its antidiagonal elements

%C Column 7 of A251055

%H R. H. Hardin, <a href="/A251054/b251054.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>12

%e Some solutions for n=2

%e ..2..2..3..3..3..3..3..3....2..0..1..0..3..0..1..2....1..0..1..0..0..1..1..2

%e ..0..0..0..0..0..0..0..0....2..0..1..0..3..0..0..1....2..0..1..0..0..0..0..1

%e ..3..3..3..3..1..1..0..0....3..0..1..0..3..0..0..0....2..0..1..0..0..0..0..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 29 2014