login
Number of (n+1)X(4+1) 0..3 arrays with no 2X2 subblock having the sum of its diagonal elements greater than the absolute difference of its antidiagonal elements
1

%I #4 Nov 29 2014 18:00:41

%S 2243,11280,24893,59215,123396,262200,533327,1107413,2297926,4888898,

%T 10549941,23231818,51804184,116876925,265531368,606511919,1389607505,

%U 3190603867,7334375879,16872832209,38832132163,89393731501,205817073537

%N Number of (n+1)X(4+1) 0..3 arrays with no 2X2 subblock having the sum of its diagonal elements greater than the absolute difference of its antidiagonal elements

%C Column 4 of A251055

%H R. H. Hardin, <a href="/A251051/b251051.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>12

%e Some solutions for n=4

%e ..2..0..0..0..3....2..2..2..2..3....0..1..1..1..3....0..0..0..0..3

%e ..2..0..0..0..3....0..0..0..0..0....0..0..0..0..2....1..0..0..0..2

%e ..2..0..0..0..0....3..3..3..3..3....1..0..0..0..1....2..0..0..0..2

%e ..2..0..0..0..0....0..0..0..0..0....1..0..0..0..1....2..0..0..0..2

%e ..3..1..1..0..0....3..1..1..1..0....2..1..1..1..0....2..0..0..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 29 2014