login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing min(x(i,j),x(i,j-1)) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction
16

%I #4 Nov 29 2014 17:28:38

%S 110,711,636,4050,6089,3550,21720,45560,45150,19112,110852,308423,

%T 422538,304421,100633,546600,1907070,3433899,3396593,1946207,521227,

%U 2624313,11102613,24844850,32439684,25346175,12029009,2668193,12343573,61631550

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing min(x(i,j),x(i,j-1)) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction

%C Table starts

%C ......110........711........4050........21720.........110852..........546600

%C ......636.......6089.......45560.......308423........1907070........11102613

%C .....3550......45150......422538......3433899.......24844850.......165531421

%C ....19112.....304421.....3396593.....32439684......267606254......2010619868

%C ...100633....1946207....25346175....279055227.....2592092409.....21672923484

%C ...521227...12029009...179902335...2247957615....23202398270....213854374926

%C ..2668193...72779934..1238480366..17355955112...197532441119...1992180311388

%C .13542602..434254685..8354406377.130154155397..1622322952743..17797755625080

%C .68311293.2567561554.55641391371.957718964643.13015173261675.154590936970044

%H R. H. Hardin, <a href="/A251037/b251037.txt">Table of n, a(n) for n = 1..128</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 12]

%F k=2: [order 28]

%F k=3: [order 59] for n>60

%F Empirical for row n:

%F n=1: [linear recurrence of order 13]

%F n=2: [order 32]

%F n=3: [order 60]

%F n=4: [order 98] for n>100

%e Some solutions for n=2 k=4

%e ..0..0..3..0..1....0..3..0..3..0....0..2..1..0..1....2..0..1..0..2

%e ..0..0..2..1..2....1..2..1..1..3....0..2..2..1..0....2..0..0..1..1

%e ..0..0..2..2..1....2..3..2..2..2....0..3..3..2..1....2..1..1..3..3

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 29 2014