login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing min(x(i,j),x(i,j-1)) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction
16

%I #4 Nov 29 2014 17:28:38

%S 110,711,636,4050,6089,3550,21720,45560,45150,19112,110852,308423,

%T 422538,304421,100633,546600,1907070,3433899,3396593,1946207,521227,

%U 2624313,11102613,24844850,32439684,25346175,12029009,2668193,12343573,61631550

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing min(x(i,j),x(i,j-1)) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction

%C Table starts

%C ......110........711........4050........21720.........110852..........546600

%C ......636.......6089.......45560.......308423........1907070........11102613

%C .....3550......45150......422538......3433899.......24844850.......165531421

%C ....19112.....304421.....3396593.....32439684......267606254......2010619868

%C ...100633....1946207....25346175....279055227.....2592092409.....21672923484

%C ...521227...12029009...179902335...2247957615....23202398270....213854374926

%C ..2668193...72779934..1238480366..17355955112...197532441119...1992180311388

%C .13542602..434254685..8354406377.130154155397..1622322952743..17797755625080

%C .68311293.2567561554.55641391371.957718964643.13015173261675.154590936970044

%H R. H. Hardin, <a href="/A251037/b251037.txt">Table of n, a(n) for n = 1..128</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 12]

%F k=2: [order 28]

%F k=3: [order 59] for n>60

%F Empirical for row n:

%F n=1: [linear recurrence of order 13]

%F n=2: [order 32]

%F n=3: [order 60]

%F n=4: [order 98] for n>100

%e Some solutions for n=2 k=4

%e ..0..0..3..0..1....0..3..0..3..0....0..2..1..0..1....2..0..1..0..2

%e ..0..0..2..1..2....1..2..1..1..3....0..2..2..1..0....2..0..0..1..1

%e ..0..0..2..2..1....2..3..2..2..2....0..3..3..2..1....2..1..1..3..3

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 29 2014