login
A251028
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having the sum of its diagonal elements greater than the maximum of its antidiagonal elements
9
110, 526, 526, 1966, 2546, 1966, 6321, 8207, 8207, 6321, 18330, 23404, 20608, 23404, 18330, 49481, 60044, 51347, 51347, 60044, 49481, 126955, 144737, 118871, 119632, 118871, 144737, 126955, 314337, 334167, 272547, 257578, 257578, 272547, 334167
OFFSET
1,1
COMMENTS
Table starts
.....110.....526....1966.....6321....18330....49481...126955....314337
.....526....2546....8207....23404....60044...144737...334167....755336
....1966....8207...20608....51347...118871...272547...608267...1356939
....6321...23404...51347...119632...257578...563271..1199576...2590598
...18330...60044..118871...257578...516684..1078862..2203974...4638560
...49481..144737..272547...563271..1078862..2160510..4230166...8587303
..126955..334167..608267..1199576..2203974..4230166..7948184..15543033
..314337..755336.1356939..2590598..4638560..8587303.15543033..29146692
..759223.1690491.3017800..5601754..9823382.17595371.30783775..55366008
.1803024.3781186.6755296.12305560.21323795.37245814.63428115.109773400
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 7*a(n-1) -18*a(n-2) +17*a(n-3) +10*a(n-4) -39*a(n-5) +38*a(n-6) -17*a(n-7) +3*a(n-8)
k=2: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>13
k=3: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>14
k=4: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>14
k=5: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>14
k=6: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>14
k=7: a(n) = 8*a(n-1) -25*a(n-2) +35*a(n-3) -7*a(n-4) -49*a(n-5) +77*a(n-6) -55*a(n-7) +20*a(n-8) -3*a(n-9) for n>14
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0..2....0..3..3..3..3....0..0..0..0..3....0..0..2..2..3
..0..0..0..0..2....0..0..0..0..0....0..0..0..0..3....0..0..1..0..1
..2..2..2..2..2....2..2..2..2..2....0..0..0..0..2....0..0..1..0..1
..1..0..0..0..0....0..0..0..0..0....1..0..0..0..2....1..0..1..0..1
..3..2..1..1..0....3..3..3..1..0....3..0..0..0..2....2..0..1..0..0
CROSSREFS
Sequence in context: A209372 A285984 A158539 * A251021 A251030 A156852
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 29 2014
STATUS
approved