Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Nov 29 2014 07:49:03
%S 71,562,562,4459,12077,4459,35381,260056,260056,35381,280728,5598430,
%T 15156945,5598430,280728,2227408,120515358,883387252,883387252,
%U 120515358,2227408,17673153,2594308975,51487962431,139471732486,51487962431
%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having the sum of its diagonal elements less than the absolute difference of its antidiagonal elements
%C Table starts
%C .......71.........562............4459..............35381.................280728
%C ......562.......12077..........260056............5598430..............120515358
%C .....4459......260056........15156945..........883387252............51487962431
%C ....35381.....5598430.......883387252.......139471732486.........22020178055066
%C ...280728...120515358.....51487962431.....22020178055066.......9416933752243198
%C ..2227408..2594308975...3000977166321...3476591604928509....4027179649653568467
%C .17673153.55847243498.174911850250602.548891857207523016.1722239421934657361988
%H R. H. Hardin, <a href="/A250982/b250982.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: a(n) = 9*a(n-1) -10*a(n-2) +13*a(n-3) -6*a(n-4) +a(n-5)
%F k=2: [order 14]
%F k=3: [order 34]
%F k=4: [order 97]
%e Some solutions for n=2 k=4
%e ..0..1..1..1..0....0..0..2..2..0....0..0..1..1..2....0..0..2..1..1
%e ..0..1..0..1..1....0..1..1..2..1....0..1..2..0..1....0..1..1..1..1
%e ..0..1..1..2..2....0..1..1..0..0....0..1..1..1..2....0..1..1..1..2
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 29 2014