%I #4 Nov 28 2014 18:47:27
%S 164,1652,1652,16588,42776,16588,166600,1104364,1104364,166600,
%T 1673388,28564788,73855420,28564788,1673388,16808096,739019204,
%U 4951389320,4951389320,739019204,16808096,168826024,19118642332,332020435016
%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having a diagonal absolute difference less than its antidiagonal absolute difference
%C Table starts
%C ......164........1652..........16588............166600..............1673388
%C .....1652.......42776........1104364..........28564788............739019204
%C ....16588.....1104364.......73855420........4951389320.........332020435016
%C ...166600....28564788.....4951389320......861990961500......150150624833184
%C ..1673388...739019204...332020435016...150150624833184....68000055264949776
%C .16808096.19118642332.22261912983384.26155302062776044.30803789209655858532
%H R. H. Hardin, <a href="/A250935/b250935.txt">Table of n, a(n) for n = 1..112</a>
%F Empirical for column k:
%F k=1: a(n) = 12*a(n-1) -23*a(n-2) +37*a(n-3) -33*a(n-4)
%F k=2: [order 16]
%F k=3: [order 64]
%e Some solutions for n=2 k=4
%e ..0..0..0..2..1....0..0..1..2..3....2..0..1..2..2....0..0..0..2..1
%e ..0..0..1..2..3....0..0..1..3..0....0..0..3..0..0....0..0..2..2..3
%e ..0..0..2..2..3....0..2..3..0..2....0..2..2..0..3....0..2..3..3..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 28 2014