login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250896
Number of (n+1) X (6+1) 0..2 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.
1
10875, 31215, 91030, 265546, 764315, 2168405, 6060594, 16732140, 45832201, 125162059, 342287192, 940831202, 2606118783, 7287014385, 20581424254, 58711891192, 169046356181, 490755132023, 1434774937860, 4219275237870
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 12*a(n-1) - 60*a(n-2) + 162*a(n-3) - 255*a(n-4) + 234*a(n-5) - 116*a(n-6) + 24*a(n-7) for n>9.
Conjectures from Colin Barker, Nov 23 2018: (Start)
G.f.: x*(10875 - 99285*x + 368950*x^2 - 715664*x^3 + 755858*x^4 - 402400*x^5 + 50022*x^6 + 63432*x^7 - 26568*x^8) / ((1 - x)^3*(1 - 2*x)^3*(1 - 3*x)).
a(n) = (-8787 + 3389*2^n + 169*3^(3+n) + (14186-99*2^(4+n))*n + 36*(145+33*2^(1+n))*n^2) / 4 for n>2.
(End)
EXAMPLE
Some solutions for n=3:
..2..1..1..0..0..1..0....0..1..1..1..0..0..0....0..1..0..1..0..0..0
..1..2..2..1..1..2..1....0..1..1..1..0..0..0....0..1..0..1..0..0..0
..0..1..1..0..0..1..0....0..1..1..1..1..1..1....0..1..0..1..0..0..0
..0..1..1..0..0..2..1....0..1..1..1..1..2..2....0..1..0..2..2..2..2
CROSSREFS
Column 6 of A250898.
Sequence in context: A250954 A334003 A214243 * A164824 A329196 A083513
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 28 2014
STATUS
approved