login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (6+1) X (n+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.
1

%I #7 Nov 20 2018 03:38:17

%S 288,796,2010,5028,12036,27986,63184,139436,301786,643164,1353544,

%T 2820050,5828064,11966884,24444622,49725780,100817008,203857762,

%U 411330612,828530748,1666582118,3348596476,6722194620,13484879538

%N Number of (6+1) X (n+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

%H R. H. Hardin, <a href="/A250788/b250788.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 7*a(n-1) - 18*a(n-2) + 17*a(n-3) + 8*a(n-4) - 29*a(n-5) + 18*a(n-6) + 3*a(n-7) - 7*a(n-8) + 2*a(n-9).

%F Empirical g.f.: 2*x*(144 - 610*x + 811*x^2 + 195*x^3 - 1408*x^4 + 1026*x^5 + 137*x^6 - 421*x^7 + 128*x^8) / ((1 - x)^5*(1 + x)*(1 - 2*x)*(1 - x - x^2)). - _Colin Barker_, Nov 20 2018

%e Some solutions for n=4:

%e ..1..0..0..0..1....1..0..0..1..0....0..0..0..0..1....0..0..1..0..1

%e ..0..1..1..1..0....1..0..0..1..0....0..0..0..0..1....1..1..0..1..0

%e ..0..1..1..1..0....1..0..0..1..0....0..0..0..1..0....1..1..0..1..0

%e ..0..1..1..1..0....1..0..0..1..0....0..0..1..0..1....1..1..0..1..0

%e ..0..1..1..1..1....1..1..1..0..1....1..1..0..1..0....1..1..0..1..0

%e ..0..1..1..1..1....1..1..1..0..1....1..1..1..0..1....1..1..1..0..1

%e ..0..1..1..1..1....1..1..1..1..0....1..1..1..0..1....1..1..1..0..1

%Y Row 6 of A250783.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 27 2014