login
Number of (n+1) X (5+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nonincreasing x(i,j)-x(i-1,j) in the j direction.
1

%I #10 Nov 17 2018 13:10:55

%S 66,70,78,94,126,190,318,574,1086,2110,4158,8254,16446,32830,65598,

%T 131134,262206,524350,1048638,2097214,4194366,8388670,16777278,

%U 33554494,67108926,134217790,268435518,536870974,1073741886,2147483710,4294967358

%N Number of (n+1) X (5+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nonincreasing x(i,j)-x(i-1,j) in the j direction.

%H R. H. Hardin, <a href="/A250739/b250739.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) - 2*a(n-2); a(n) = 2^(n+1) + 62.

%F Empirical g.f.: 2*x*(33 - 64*x) / ((1 - x)*(1 - 2*x)). - _Colin Barker_, Nov 17 2018

%e Some solutions for n=4:

%e ..1..1..1..1..1..1....0..1..1..0..1..0....0..1..1..1..1..0....0..0..0..0..1..0

%e ..0..0..0..0..0..0....0..1..1..0..1..0....0..1..1..1..1..0....0..0..0..0..1..0

%e ..1..1..1..1..1..1....0..1..1..0..1..0....0..1..1..1..1..0....0..0..0..0..1..0

%e ..0..0..0..0..0..0....0..1..1..0..1..0....0..1..1..1..1..0....0..0..0..0..1..0

%e ..1..1..1..1..1..1....0..1..1..0..1..0....0..1..1..1..1..0....0..0..0..0..1..0

%Y Column 5 of A250742.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 27 2014