Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Dec 12 2014 20:20:52
%S 9,22,18,50,46,33,114,110,85,58,257,257,208,144,99,579,596,496,365,
%T 230,166,1302,1376,1158,885,600,350,275,2927,3173,2699,2092,1500,942,
%U 513,452,6578,7310,6257,4889,3605,2434,1418,728,739,14782,16838,14520,11377,8514
%N T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction
%C Table starts
%C ....9...22...50...114...257...579...1302...2927....6578...14782...33216
%C ...18...46..110...257...596..1376...3173...7310...16838...38777...89300
%C ...33...85..208...496..1158..2699...6257..14520...33640...77999..180744
%C ...58..144..365...885..2092..4889..11377..26419...61330..142336..330417
%C ...99..230..600..1500..3605..8514..19887..46315..107565..249853..579962
%C ..166..350..942..2434..6016.14437..34069..79704..185684..431691.1002869
%C ..275..513.1418..3807..9728.23941..57397.135645..317769..741367.1725118
%C ..452..728.2065..5760.15297.38821..95231.228455..540546.1268605.2963321
%C ..739.1006.2918..8465.23407.61554.155263.380220..912438.2161980.5081193
%C .1204.1358.4022.12119.34943.95438.248537.623913.1525255.3661515.8684030
%H R. H. Hardin, <a href="/A250729/b250729.txt">Table of n, a(n) for n = 1..1860</a>
%F Empirical for column k:
%F k=1: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +a(n-4)
%F k=2: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6); also a polynomial of degree 4 plus a quasipolynomial of degree 0 with period 2
%F k=3: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6); also a polynomial of degree 4 plus a quasipolynomial of degree 0 with period 2
%F k=4: a(n) = 5*a(n-1) -9*a(n-2) +5*a(n-3) +5*a(n-4) -9*a(n-5) +5*a(n-6) -a(n-7) for n>8; also a polynomial of degree 5 plus a quasipolynomial of degree 0 with period 2 for n>1
%F k=5: [order 8; also a polynomial of degree 6 plus a quasipolynomial of degree 0 with period 2] for n>10
%F k=6: [order 9; also a polynomial of degree 7 plus a quasipolynomial of degree 0 with period 2] for n>14
%F k=7: [order 10; also a polynomial of degree 8 plus a quasipolynomial of degree 0 with period 2] for n>17
%F Empirical for row n:
%F n=1: a(n) = 3*a(n-1) -a(n-2) -2*a(n-3) +a(n-4)
%F n=2: a(n) = 2*a(n-1) +2*a(n-2) -3*a(n-3) for n>4
%F n=3: a(n) = 4*a(n-1) -2*a(n-2) -9*a(n-3) +12*a(n-4) -2*a(n-5) -3*a(n-6) +a(n-7) for n>8
%F n=4: [order 7] for n>9
%F n=5: [order 9] for n>12
%F n=6: [order 11] for n>15
%F n=7: [order 14] for n>19
%e Some solutions for n=4 k=4
%e ..0..0..0..0..1....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
%e ..1..0..1..0..1....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
%e ..0..1..0..1..0....0..1..0..0..0....0..0..0..0..0....0..0..0..0..0
%e ..1..0..1..0..1....1..0..1..0..1....0..0..0..0..0....0..0..0..0..1
%e ..0..1..0..1..0....0..1..0..1..0....0..1..0..1..0....0..1..1..0..1
%Y Column 1 is A192760(n+2)
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 27 2014