login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250630
Number of (n+1)X(6+1) 0..2 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction
1
28456, 190213, 994030, 4416061, 17202711, 60472234, 195029867, 584383121, 1641320797, 4350649060, 10946535213, 26264135834, 60344532228, 133238716551, 283638236272, 583811316064, 1164928298365, 2258673657000, 4264498245386
OFFSET
1,1
COMMENTS
Column 6 of A250632
LINKS
FORMULA
Empirical: a(n) = 9*a(n-1) -28*a(n-2) +12*a(n-3) +134*a(n-4) -294*a(n-5) -28*a(n-6) +876*a(n-7) -919*a(n-8) -833*a(n-9) +2312*a(n-10) -680*a(n-11) -2380*a(n-12) +2380*a(n-13) +680*a(n-14) -2312*a(n-15) +833*a(n-16) +919*a(n-17) -876*a(n-18) +28*a(n-19) +294*a(n-20) -134*a(n-21) -12*a(n-22) +28*a(n-23) -9*a(n-24) +a(n-25) for n>36
Empirical for n mod 2 = 0: a(n) = (677/10461394944000)*n^16 + (323/32691859200)*n^15 + (328303/523069747200)*n^14 + (23351/1067489280)*n^13 + (26884057/57480192000)*n^12 + (19162687/2874009600)*n^11 + (264304657/3657830400)*n^10 + (282962783/365783040)*n^9 + (546703353947/73156608000)*n^8 + (9006721609/261273600)*n^7 + (606619175047/2874009600)*n^6 + (5364465529/35925120)*n^5 + (1489177450559837/72648576000)*n^4 - (52712541330373/363242880)*n^3 + (55868420400113/100900800)*n^2 - (20512474811/60060)*n - 1864584 for n>11
Empirical for n mod 2 = 1: a(n) = (677/10461394944000)*n^16 + (323/32691859200)*n^15 + (328303/523069747200)*n^14 + (23351/1067489280)*n^13 + (26884057/57480192000)*n^12 + (19162687/2874009600)*n^11 + (264304657/3657830400)*n^10 + (282962783/365783040)*n^9 + (546703353947/73156608000)*n^8 + (9007343689/261273600)*n^7 + (607505328007/2874009600)*n^6 + (10667540267/71850240)*n^5 + (1489289213961587/72648576000)*n^4 - (422056644097481/2905943040)*n^3 + (1787002967118631/3228825600)*n^2 - (863144758907/2562560)*n - (3842277903/2048)for n>11
EXAMPLE
Some solutions for n=2
..0..0..1..1..1..1..1....0..0..0..0..0..0..1....0..0..0..0..0..0..0
..0..0..1..1..1..1..2....0..0..0..0..1..0..2....0..0..0..0..0..1..2
..2..0..2..2..1..2..2....1..2..2..2..0..2..1....0..1..1..0..1..2..2
CROSSREFS
Sequence in context: A202614 A270855 A250992 * A236595 A083611 A083612
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 26 2014
STATUS
approved