login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250625
Number of (n+1) X (1+1) 0..2 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.
1
36, 125, 380, 1072, 2856, 7307, 18131, 43966, 104755, 246252, 572894, 1322172, 3032579, 6922433, 15743520, 35703349, 80791394, 182511840, 411772666, 928103255, 2090301223, 4705147230, 10586418861, 23811245592, 53543550752
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 11*a(n-2) + a(n-3) + 16*a(n-4) - 10*a(n-5) - 7*a(n-6) + 6*a(n-7) + a(n-8) - a(n-9).
Empirical g.f.: x*(36 - 91*x + 26*x^2 + 131*x^3 - 97*x^4 - 57*x^5 + 55*x^6 + 8*x^7 - 9*x^8) / ((1 - x)^2*(1 - x - x^2)^2*(1 - 2*x - x^2 + x^3)). - Colin Barker, Nov 15 2018
EXAMPLE
Some solutions for n=4:
..0..0....0..0....1..0....1..0....0..0....0..0....1..0....0..1....0..0....0..1
..1..1....1..1....0..1....0..1....0..1....0..0....0..2....1..0....1..1....1..0
..0..2....1..1....1..0....0..1....1..0....1..0....1..1....0..2....0..2....0..1
..0..2....1..1....0..2....1..0....0..1....0..2....1..2....1..1....0..2....0..1
..1..2....1..1....2..0....0..1....1..2....0..2....2..2....1..1....1..1....0..1
CROSSREFS
Column 1 of A250632.
Sequence in context: A238037 A238032 A365506 * A057837 A352316 A007265
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 26 2014
STATUS
approved