login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1)X(5+1) 0..2 arrays with nondecreasing max(x(i,j),x(i,j-1)) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction
1

%I #4 Nov 25 2014 13:32:27

%S 8625,59160,333355,1686514,7838610,34503682,145409040,595065843,

%T 2377121443,9335358862,36144381110,138522317644,526404191153,

%U 1988403996653,7473849368743,27996884288652,104587966104872

%N Number of (n+1)X(5+1) 0..2 arrays with nondecreasing max(x(i,j),x(i,j-1)) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction

%C Column 5 of A250592

%H R. H. Hardin, <a href="/A250589/b250589.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 20*a(n-1) -142*a(n-2) +208*a(n-3) +2725*a(n-4) -15261*a(n-5) +8294*a(n-6) +172548*a(n-7) -521171*a(n-8) -395240*a(n-9) +4773332*a(n-10) -5923544*a(n-11) -17684878*a(n-12) +55922728*a(n-13) +996884*a(n-14) -217723306*a(n-15) +252927943*a(n-16) +384433618*a(n-17) -1078638107*a(n-18) +110644587*a(n-19) +2220540447*a(n-20) -2100319081*a(n-21) -2131014704*a(n-22) +4834767824*a(n-23) -525198323*a(n-24) -5572935189*a(n-25) +4122094724*a(n-26) +2960973976*a(n-27) -5263643960*a(n-28) +529467255*a(n-29) +3343709842*a(n-30) -1909188069*a(n-31) -942962634*a(n-32) +1297322988*a(n-33) -116323104*a(n-34) -429249290*a(n-35) +183224257*a(n-36) +60177703*a(n-37) -61346606*a(n-38) +4409663*a(n-39) +9604059*a(n-40) -2885635*a(n-41) -571361*a(n-42) +407795*a(n-43) -25859*a(n-44) -22758*a(n-45) +4716*a(n-46) +224*a(n-47) -149*a(n-48) +12*a(n-49) for n>54

%e Some solutions for n=2

%e ..1..0..1..1..1..2....1..0..0..1..1..1....0..0..0..0..0..0....0..0..0..1..1..1

%e ..0..1..1..2..2..2....0..2..1..1..1..1....0..2..0..0..0..0....0..0..2..1..1..1

%e ..1..2..2..1..2..2....2..1..2..2..2..1....2..0..2..2..1..2....1..2..0..2..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 25 2014