Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Mar 07 2023 04:26:11
%S 8,60,302,1516,7126,30780,127586,518052,2085808,8367220,33513408,
%T 134137736,536713774,2147172564,8589316642,34358507208,137436497326,
%U 549750908948,2199013454674,8796073430888,35184332920270,140737410034420
%N Number of length n+2 0..3 arrays with the sum of second differences multiplied by some arrangement of +-1 equal to zero.
%C Column 3 of A250561.
%H Manuel Kauers and Christoph Koutschan, <a href="/A250556/b250556.txt">Table of n, a(n) for n = 1..1000</a> (terms 1..47 from R. H. Hardin).
%H M. Kauers and C. Koutschan, <a href="https://arxiv.org/abs/2303.02793">Some D-finite and some possibly D-finite sequences in the OEIS</a>, arXiv:2303.02793 [cs.SC], 2023.
%F From _Manuel Kauers_ and _Christoph Koutschan_, Mar 01 2023: (Start)
%F Generating function: 2*x*(4 + 2*x - 3*x^2 + 73*x^3 + 115*x^4 - 139*x^5 - 453*x^6 - 1231*x^7 + 38*x^8 + 406*x^9 + 3597*x^10 + 2087*x^11 + 1666*x^12 - 3614*x^13 - 4178*x^14 - 4504*x^15 + 903*x^16 + 1985*x^17 + 4173*x^18 + 403*x^19 - 202*x^20 - 1324*x^21 - 1296*x^22 + 684*x^23 - 300*x^24 + 508*x^25 - 56*x^26 + 32*x^27)/((1 - 4*x)*(1 - 2*x)*(1 - x)^3*(1 + x)^2*(1 + x^2)^2*(1 - 2*x^3)^2).
%F Recurrence equation: 32*a(n) - 56*a(n + 1) + 28*a(n + 2) - 36*a(n + 3) - 8*a(n + 4) + 84*a(n + 5) - 44*a(n + 6) + 58*a(n + 7) - 73*a(n + 8) - a(n + 9) + 4*a(n + 10) - 8*a(n + 11) + 42*a(n + 12) - 26*a(n + 13) + 12*a(n + 14) - 14*a(n + 15) + 7*a(n + 16) - a(n + 17) = 0 for n>11. (End)
%e Some solutions for n=6
%e 3 1 1 0 3 3 3 1 1 1 3 0 1 2 0 2
%e 2 2 0 0 0 3 0 0 0 2 3 3 1 2 1 2
%e 3 2 2 1 2 1 0 2 1 2 2 2 3 1 1 2
%e 2 2 2 3 0 1 0 3 1 2 0 1 3 3 3 0
%e 1 0 1 2 1 3 1 3 2 2 0 2 1 3 1 1
%e 0 3 0 1 1 2 3 3 0 2 0 1 3 3 0 2
%e 3 1 2 0 3 3 3 0 2 1 3 1 0 0 3 2
%e 2 0 3 0 0 1 0 3 1 2 3 2 2 0 0 2
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 25 2014