login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of times prime(n) (the n-th prime) occurs as the least prime factor among numbers 1 .. (prime(n)^2 * prime(n+1)): a(n) = A078898(A251720(n)).
10

%I #42 Nov 05 2020 16:11:42

%S 6,8,12,21,33,45,63,80,116,148,182,232,265,296,356,433,490,548,625,

%T 674,740,829,919,1055,1187,1252,1313,1376,1446,1657,1897,2029,2134,

%U 2301,2484,2605,2785,2946,3110,3301,3439,3654,3869,3978,4086,4349,4811,5147,5273,5395,5604,5787,6049,6403,6684,6954,7153

%N Number of times prime(n) (the n-th prime) occurs as the least prime factor among numbers 1 .. (prime(n)^2 * prime(n+1)): a(n) = A078898(A251720(n)).

%C a(n) = Position of 6 on row n of array A249821. This is always larger than A250474(n), the position of 4 on row n, as 4 is guaranteed to be the first composite term on each row of A249821.

%C From _Antti Karttunen_, Mar 29 2015: (Start)

%C a(n) = 1 + number of positive integers <= (prime(n)*prime(n+1)) whose smallest prime factor is at least prime(n).

%C That a(n) > A250474(n) can also be seen by realizing that prime(n) must occur at least as many times as the smallest prime factor for the numbers in range 1 .. (prime(n)^2 * prime(n+1)) than for numbers in (smaller) range 1 .. (prime(n)^3), and also by realizing that a(n) cannot be equal to A250474(n) because each row of A249822 is a permutation of natural numbers.

%C Or more simply, by considering the comment given in A256447 which follows from the new interpretation given above.

%C (End)

%H Antti Karttunen, <a href="/A250477/b250477.txt">Table of n, a(n) for n = 1..564</a>

%H Antti Karttunen, <a href="/A250477/a250477.png">Ratio a(n)/A250474(n+1), plotted up to n=65 with OEIS Plot2-utility</a>

%F a(n) = A078898(A251720(n)).

%F a(1) = 1, a(n) = Sum_{d | A002110(n-1)} moebius(d) * floor(A006094(n) / d). [Follows when A251720, (p_n)^2 * p_{n+1} is substituted to the similar formula given for A078898. Here p_n is the n-th prime (A000040(n)), A006094(n) gives the product p_n * p{n+1} and A002110(n) gives the product of the first n primes. Because the latter is always squarefree, one could use here also Liouville's lambda (A008836) instead of Moebius mu (A008683)].

%F a(n) = A250474(n) + A256447(n).

%t f[n_] := Count[Range[Prime[n]^2*Prime[n + 1]], x_ /; Min[First /@ FactorInteger[x]] == Prime@ n]; Array[f, 20] (* _Michael De Vlieger_, Mar 30 2015 *)

%o (PARI)

%o allocatemem(234567890);

%o A002110(n) = prod(i=1, n, prime(i));

%o A250477(n) = { my(m); m = (prime(n) * prime(n+1)); sumdiv(A002110(n-1), d, (moebius(d)*(m\d))); };

%o for(n=1, 23, print1(A250477(n),", "));

%o \\ A more practical program:

%o (PARI)

%o allocatemem(234567890);

%o vecsize = (2^24)-4;

%o v020639 = vector(vecsize);

%o v020639[1] = 1; for(n=2,vecsize, v020639[n] = vecmin(factor(n)[, 1]));

%o A020639(n) = v020639[n];

%o A250477(n) = { my(p=prime(n),q=prime(n+1),u=p*q,k=1,s=1); while(k <= u, if(A020639(k) >= p, s++); k++); s; };

%o for(n=1, 564, write("b250477.txt", n, " ", A250477(n)));

%o \\ _Antti Karttunen_, Mar 29 2015

%Y Column 6 of A249822. Cf. also A250474 (column 4), A250478 (column 8).

%Y First differences: A256446. Cf. also A256447, A256448.

%Y Cf. A002110, A006094, A020639, A078898, A249821, A251720, A281890.

%K nonn

%O 1,1

%A _Antti Karttunen_, Dec 14 2014