login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250430
Number of (n+1)X(6+1) 0..1 arrays with nondecreasing sum of every two consecutive values in every row and column
1
400, 3000, 22500, 105000, 490000, 1715000, 6002500, 17287200, 49787136, 124467840, 311169600, 698544000, 1568160000, 3234330000, 6670805625, 12847477500, 24743290000, 45032787800, 81959673796, 142244061960
OFFSET
1,1
COMMENTS
Column 6 of A250432.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +12*a(n-2) -26*a(n-3) -65*a(n-4) +156*a(n-5) +208*a(n-6) -572*a(n-7) -429*a(n-8) +1430*a(n-9) +572*a(n-10) -2574*a(n-11) -429*a(n-12) +3432*a(n-13) -3432*a(n-15) +429*a(n-16) +2574*a(n-17) -572*a(n-18) -1430*a(n-19) +429*a(n-20) +572*a(n-21) -208*a(n-22) -156*a(n-23) +65*a(n-24) +26*a(n-25) -12*a(n-26) -2*a(n-27) +a(n-28)
Empirical for n mod 2 = 0: a(n) = (1/339738624)*n^14 + (13/56623104)*n^13 + (697/84934656)*n^12 + (2521/14155776)*n^11 + (55639/21233664)*n^10 + (97807/3538944)*n^9 + (1143251/5308416)*n^8 + (1113683/884736)*n^7 + (1838411/331776)*n^6 + (505009/27648)*n^5 + (919427/20736)*n^4 + (265331/3456)*n^3 + (4297/48)*n^2 + (377/6)*n + 20
Empirical for n mod 2 = 1: a(n) = (1/339738624)*n^14 + (13/56623104)*n^13 + (2795/339738624)*n^12 + (5081/28311552)*n^11 + (301475/113246208)*n^10 + (178667/6291456)*n^9 + (76312715/339738624)*n^8 + (18940223/14155776)*n^7 + (2048631355/339738624)*n^6 + (1158380483/56623104)*n^5 + (647048923/12582912)*n^4 + (292086865/3145728)*n^3 + (477479275/4194304)*n^2 + (177888375/2097152)*n + (121550625/4194304).
a(n+1) = A202097(n). - R. J. Mathar, Dec 02 2014
EXAMPLE
Some solutions for n=4
..0..0..1..1..1..1..1....0..0..0..1..1..1..1....0..0..0..0..0..0..1
..0..0..1..0..1..1..1....0..1..0..1..0..1..1....0..0..0..1..0..1..0
..1..0..1..1..1..1..1....1..0..1..1..1..1..1....0..1..1..1..1..1..1
..0..0..1..1..1..1..1....0..1..0..1..1..1..1....0..0..0..1..0..1..0
..1..0..1..1..1..1..1....1..1..1..1..1..1..1....0..1..1..1..1..1..1
CROSSREFS
Sequence in context: A250847 A043400 A038483 * A281808 A192076 A006764
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 22 2014
STATUS
approved