login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A250422 Number of length 5+1 0..n arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero 1
36, 335, 1693, 5982, 16790, 39916, 84094, 161350, 287910, 484353, 776742, 1196504, 1781894, 2577507, 3636138, 5017850, 6792317, 9037401, 11842016, 15304097, 19534144, 24652517, 30793639, 38102572, 46740025, 56878092, 68706116, 82425513 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Row 5 of A250419

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..206

FORMULA

Empirical: a(n) = a(n-1) +a(n-2) +a(n-3) -4*a(n-5) -a(n-6) -a(n-7) +4*a(n-8) +4*a(n-9) -a(n-10) -a(n-11) -4*a(n-12) +a(n-14) +a(n-15) +a(n-16) -a(n-17)

Empirical for n mod 12 = 0: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (211/72)*n + 1

Empirical for n mod 12 = 1: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (4903/3456)*n + (74825/20736)

Empirical for n mod 12 = 2: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (395/144)*n + (1633/1296)

Empirical for n mod 12 = 3: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1765/1152)*n + (953/256)

Empirical for n mod 12 = 4: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (649/216)*n + (92/81)

Empirical for n mod 12 = 5: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1549/1152)*n + (76105/20736)

Empirical for n mod 12 = 6: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (395/144)*n + (17/16)

Empirical for n mod 12 = 7: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (5551/3456)*n + (80009/20736)

Empirical for n mod 12 = 8: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (211/72)*n + (97/81)

Empirical for n mod 12 = 9: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1549/1152)*n + (889/256)

Empirical for n mod 12 = 10: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (1217/432)*n + (1553/1296)

Empirical for n mod 12 = 11: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1765/1152)*n + (81289/20736)

EXAMPLE

Some solutions for n=6

..3....5....3....3....4....4....4....2....2....2....3....6....2....5....0....5

..5....1....0....4....2....2....6....1....4....0....2....2....2....4....2....4

..4....2....2....6....5....1....1....0....0....0....2....2....3....2....5....6

..1....0....2....1....3....1....6....2....0....5....3....6....0....4....0....1

..3....0....3....1....6....5....6....5....2....3....4....1....6....2....4....2

..1....3....0....3....2....3....0....1....5....6....1....6....4....3....2....4

CROSSREFS

Sequence in context: A219004 A053136 A000821 * A223307 A244795 A222492

Adjacent sequences:  A250419 A250420 A250421 * A250423 A250424 A250425

KEYWORD

nonn

AUTHOR

R. H. Hardin, Nov 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 09:54 EDT 2021. Contains 344981 sequences. (Running on oeis4.)