%I #4 Nov 19 2014 16:39:51
%S 1198,92497,1680652,15139945,89632970,400455241,1460936344,4572816753,
%T 12694412710,31993255009,74462887204,162125953561,333521588674,
%U 653388603545,1226711384368,2218597290337,3881807338398,6594170951665
%N Number of length 6+6 0..n arrays with every seven consecutive terms having the maximum of some three terms equal to the minimum of the remaining four terms
%C Row 6 of A250373
%H R. H. Hardin, <a href="/A250379/b250379.txt">Table of n, a(n) for n = 1..135</a>
%F Empirical: a(n) = (1/231)*n^11 + (151/210)*n^10 + (191/14)*n^9 + 81*n^8 + (1569/7)*n^7 + (703/2)*n^6 + (68657/210)*n^5 + (2941/21)*n^4 - (94/21)*n^3 + (371/15)*n^2 + (14918/385)*n + 1
%e Some solutions for n=2
%e ..2....2....1....0....0....1....0....2....0....0....1....0....0....0....1....2
%e ..0....0....1....2....1....2....1....0....1....1....1....1....1....2....1....0
%e ..0....0....2....2....1....0....0....2....1....1....2....2....2....0....2....1
%e ..1....1....1....1....1....1....1....1....0....1....2....0....2....0....2....0
%e ..0....1....0....1....2....1....1....2....1....0....0....1....0....0....1....2
%e ..0....1....0....0....2....0....2....1....2....2....2....2....1....2....1....2
%e ..0....1....1....1....0....1....1....1....2....1....1....1....1....0....1....1
%e ..0....2....1....2....1....1....0....2....1....2....0....1....1....1....0....2
%e ..0....2....1....2....1....2....2....0....0....1....1....1....1....2....0....1
%e ..1....1....2....0....1....0....2....1....1....1....1....2....0....0....1....0
%e ..1....2....2....1....0....2....1....0....0....2....1....1....1....0....1....1
%e ..0....1....2....2....1....2....0....1....2....1....0....2....1....0....2....2
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 19 2014