login
A250373
T(n,k)=Number of length n+6 0..k arrays with every seven consecutive terms having the maximum of some three terms equal to the minimum of the remaining four terms
15
93, 1382, 151, 8964, 3096, 252, 37385, 24566, 7168, 424, 118621, 119235, 69984, 16798, 714, 312578, 428421, 396745, 202184, 39471, 1198, 720112, 1256106, 1616636, 1340867, 584904, 92497, 1996, 1498569, 3179756, 5272892, 6202712, 4530981
OFFSET
1,1
COMMENTS
Table starts
...93....1382......8964......37385......118621.......312578.......720112
..151....3096.....24566.....119235......428421......1256106......3179756
..252....7168.....69984.....396745.....1616636......5272892.....14647808
..424...16798....202184....1340867.....6202712.....22517208.....68640720
..714...39471....584904....4530981....23761098.....95876627....320301600
.1198...92497...1680652...15139945....89632970....400455241...1460936344
.1996..215345...4766064...49559017...328905292...1616234585...6398378176
.3292..496659..13262440..157464877..1159359444...6203069791..26383796944
.5464.1156281..37406584..510276209..4200082656..24676972585.113797974816
.9138.2712668.106733108.1679222839.15510937222.100433289066.503805257096
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 56]
Empirical for row n:
n=1: [polynomial of degree 6]
n=2: [polynomial of degree 7]
n=3: [polynomial of degree 8]
n=4: [polynomial of degree 9]
n=5: [polynomial of degree 10]
n=6: [polynomial of degree 11]
n=7: [polynomial of degree 11]
EXAMPLE
Some solutions for n=3 k=4
..1....0....1....0....1....0....0....1....1....1....0....0....0....1....0....0
..1....2....1....4....1....3....2....0....1....1....2....2....2....1....0....2
..2....1....4....2....3....4....1....4....0....3....1....1....1....0....2....4
..2....1....2....0....1....0....2....0....1....1....1....1....2....2....3....2
..1....3....4....2....3....1....1....0....2....2....3....4....3....3....0....2
..0....0....3....3....0....4....0....4....4....1....2....1....3....1....0....1
..0....3....2....4....1....1....2....0....0....0....1....0....2....4....0....2
..1....0....1....1....0....1....1....0....1....1....0....3....2....1....0....0
..1....1....0....2....4....2....0....3....4....0....2....2....4....1....2....3
CROSSREFS
Sequence in context: A160250 A332614 A264556 * A250374 A146125 A353002
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 19 2014
STATUS
approved