login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250363
Number of length 5 arrays x(i), i=1..5 with x(i) in i..i+n and no value appearing more than 3 times.
1
32, 243, 1016, 3094, 7712, 16700, 32608, 58826, 99704, 160672, 248360, 370718, 537136, 758564, 1047632, 1418770, 1888328, 2474696, 3198424, 4082342, 5151680, 6434188, 7960256, 9763034, 11878552, 14345840, 17207048, 20507566, 24296144
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = n^5 + 5*n^4 + 10*n^3 + 5*n^2 + 17*n + 2 for n>2.
Conjectures from Colin Barker, Nov 13 2018: (Start)
G.f.: x*(32 + 51*x + 38*x^2 + 3*x^3 + 8*x^4 - 29*x^5 + 22*x^6 - 5*x^7) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>8.
(End)
EXAMPLE
Some solutions for n=6:
..1....2....1....2....5....3....5....4....4....3....3....6....2....2....1....3
..3....2....7....4....6....5....5....3....1....1....5....2....7....5....1....7
..6....2....6....5....8....2....4....3....5....7....6....5....8....6....3....4
..4....3....4....8....8....5....6....9....7....4....6....8....4....5....9....9
..4....7....9....4...10...10...10....9....4...10....4...10....9....4...10...10
CROSSREFS
Row 5 of A250361.
Sequence in context: A186774 A223952 A224136 * A346637 A017674 A184979
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 19 2014
STATUS
approved