login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length n arrays x(i), i=1..n with x(i) in i..i+7 and no value appearing more than 3 times
1

%I #4 Nov 19 2014 16:00:47

%S 8,64,512,4091,32608,259106,2052904,16234706,128373416,1015004124,

%T 8024737888,63441430784,501536079048,3964832287906,31343315384096,

%U 247778886499164,1958768810680376,15484663643904612,122410935014171288

%N Number of length n arrays x(i), i=1..n with x(i) in i..i+7 and no value appearing more than 3 times

%C Column 7 of A250361

%H R. H. Hardin, <a href="/A250360/b250360.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) -16*a(n-4) -64*a(n-5) -488*a(n-6) -3752*a(n-7) -29038*a(n-8) +1592*a(n-9) +11770*a(n-10) +66616*a(n-11) +151100*a(n-12) +472248*a(n-13) +953904*a(n-14) +183480*a(n-15) -568091*a(n-16) -1229632*a(n-17) -708460*a(n-18) -48256*a(n-19) +682669*a(n-20) -62120*a(n-21) +527060*a(n-22) +1075872*a(n-23) +1391771*a(n-24) +726760*a(n-25) +633398*a(n-26) +879696*a(n-27) +723511*a(n-28) -757912*a(n-29) -103140*a(n-30) +79256*a(n-31) +602486*a(n-32) -304224*a(n-33) -111134*a(n-34) -350584*a(n-35) +418679*a(n-36) -76624*a(n-37) +104514*a(n-38) -256568*a(n-39) +138277*a(n-40) -37600*a(n-41) +136030*a(n-42) -105232*a(n-43) +18365*a(n-44) -15688*a(n-45) +34876*a(n-46) -16992*a(n-47) -905*a(n-48) -4336*a(n-49) -24*a(n-50) -1968*a(n-52) -192*a(n-53) +12*a(n-56)

%e Some solutions for n=5

%e ..7....4....3....7....1....7....4....4....3....7....4....5....6....7....1....0

%e ..7....1....8....5....6....3....2....1....2....1....8....3....5....5....2....5

%e ..6....7....9....3....7....3....3....4....6....4....7....3....7....6....6....8

%e ..5...10....7...10...10....4....6....7....6....6....6....5....9....8....3....5

%e .11....8....8....4....7....6....7....9....6....8....4...11...11...11....5...10

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 19 2014