%I #4 Nov 19 2014 07:19:03
%S 424,21523,266448,1789193,8357144,30606683,94080768,253309665,
%T 614750056,1372133587,2858593552,5620837833,10521617432,18877802939,
%U 32642526080,54641070081,88871500968,140882422099,218241706192,331111612873
%N Number of length 6+5 0..n arrays with every six consecutive terms having the maximum of some three terms equal to the minimum of the remaining three terms
%C Row 6 of A250336
%H R. H. Hardin, <a href="/A250342/b250342.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (71/315)*n^9 + (851/140)*n^8 + (573/14)*n^7 + 112*n^6 + 162*n^5 + (2717/20)*n^4 + (5041/126)*n^3 - (601/14)*n^2 - (3272/105)*n + 1
%e Some solutions for n=2
%e ..0....2....2....0....1....0....0....1....1....2....0....2....2....2....1....2
%e ..2....1....2....1....1....2....1....1....1....2....0....2....1....0....1....0
%e ..1....1....0....0....1....1....2....1....1....0....1....1....2....2....0....1
%e ..1....2....1....0....1....0....1....1....1....1....1....1....1....1....2....0
%e ..0....1....1....0....2....1....1....0....1....1....1....1....1....1....1....2
%e ..1....1....0....2....1....1....0....0....1....1....1....1....0....1....1....1
%e ..1....1....1....0....0....0....0....1....0....2....2....1....1....2....1....1
%e ..2....2....1....0....0....2....2....2....2....0....1....2....0....1....0....0
%e ..0....1....1....0....1....1....2....1....1....1....0....2....2....1....2....2
%e ..1....0....2....2....2....1....1....2....1....1....0....0....1....2....1....0
%e ..0....2....1....0....2....1....1....1....1....0....2....0....2....1....0....1
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 19 2014