login
Number of length n+1 0..4 arrays with the sum of the squares of adjacent differences multiplied by some arrangement of +-1 equal to zero
1

%I #4 Nov 16 2014 06:59:14

%S 5,33,89,581,2909,17885,107387,636197,3664311,20397261,110088763,

%T 579849133,3000181901,15332918889,77721061539,391879647949,

%U 1969334263587,9876322139993,49468980310981,247600089386801,1238741942676679

%N Number of length n+1 0..4 arrays with the sum of the squares of adjacent differences multiplied by some arrangement of +-1 equal to zero

%C Column 4 of A250277

%H R. H. Hardin, <a href="/A250273/b250273.txt">Table of n, a(n) for n = 1..23</a>

%e Some solutions for n=6

%e ..0....4....1....0....4....0....3....0....0....2....2....3....3....4....0....4

%e ..1....2....0....3....3....1....0....1....0....0....4....4....1....3....4....2

%e ..2....4....4....1....2....0....2....3....3....3....3....0....2....0....1....4

%e ..4....1....1....0....3....2....3....0....4....3....2....2....3....1....2....1

%e ..0....3....3....4....3....2....1....3....2....0....4....4....0....1....3....3

%e ..4....0....3....2....2....3....3....4....4....2....3....1....3....4....4....1

%e ..2....2....1....2....4....2....1....2....0....2....0....1....1....4....2....0

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 16 2014