login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations p of [n] such that p(i) > p(i+1) iff i == 1 (mod 6).
2

%I #12 Sep 03 2021 01:51:26

%S 1,1,1,2,3,4,5,6,41,208,711,1970,4741,10284,123397,1041224,5690415,

%T 24359248,87922385,278723178,4777712981,56439873880,424119250083,

%U 2456329637366,11821181689417,49308397822776,1098781192727401,16688667550625072,159609583197355203

%N Number of permutations p of [n] such that p(i) > p(i+1) iff i == 1 (mod 6).

%H Alois P. Heinz, <a href="/A250262/b250262.txt">Table of n, a(n) for n = 0..500</a>

%p b:= proc(u, o, t) option remember; `if`(u+o=0, 1,

%p `if`(t=1, add(b(u-j, o+j-1, irem(t+1, 6)), j=1..u),

%p add(b(u+j-1, o-j, irem(t+1, 6)), j=1..o)))

%p end:

%p a:= n-> b(0, n, 0):

%p seq(a(n), n=0..35);

%t b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 1, Sum[b[u - j, o + j - 1, Mod[t + 1, 6]], {j, 1, u}], Sum[b[u + j - 1, o - j, Mod[t + 1, 6]], {j, 1, o}]]];

%t a[n_] := b[0, n, 0];

%t Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Jul 22 2019, after _Alois P. Heinz_ *)

%Y Column k=6 of A250261.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Nov 15 2014